OBJ Datastream

* The preview only display some random pages of manuals. You can download full content via the form below.

The preview is being generated... Please wait a moment!
  • Submitted by: Jordan Hugh Sam
  • File size: 691.9 KB
  • File type: application/pdf
  • Words: 38,082
  • Pages: 141
Report / DMCA this file Add to bookmark

Description

     

Out  4  Math:  

the  Intersection  of  Queer  Identity  and  Mathematical  Identity       A  Dissertation  

 

  Submitted  to  the  Faculty     Of     Drexel  University     By     David  J  Fischer       In  partial  fulfillment  of  the       requirements  for  the  degree     Doctor  of  Philosophy       In  Educational  Leadership  and  Learning  Technologies       June  2013      

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity                                                             ©  Copyright  2013   David  J  Fischer.  All  Rights  Reserved                        

  ii  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity    

  iii  

Dedication      

This  work  is  dedicated  to  my  loving  husband,  Heshie  Zinman,  without  whose  

constant  support  I  never  would  have  made  it  through  the  process.  And  to  my  dear   friend,  Edwin  Bomba,  who  supported  me  through  the  writing  process  and  helped  me  in   so  many  different  ways.  Both  of  you  made  this  dissertation  possible;  I  could  not  have   done  this  without  the  two  of  you.                                

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Acknowledgements  

  iv  

This  is  to  acknowledge  all  of  those  whose  hard  work  and  constant  support  made   this  work  possible.  To  janie,  Greg,  Mary,  and  Steve  who  believed  in  me  when  earning  a   doctorate  was  all  just  a  dream.  To  Dr.  Lesa  Covington-­‐Clarkson,  who  believed  I  could   earn  a  PhD.    To  Dr.  Dominic  Gullo  and  Dr.  Kristine  Lewis  Grant  whose  support  was   invaluable  along  with  the  push  to  always  do  better.      

 

                       

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Table  of  Contents  

  v  

Exploring  the  Intersection  of  Queer  Identity  and  Mathematical  Identity  ....................  i   Dedication  .......................................................................................................................................  iii   Acknowledgements  ......................................................................................................................  iv   Abstract  ...........................................................................................................................................  vii   Chapter  1:  Introduction  ...............................................................................................................  7   Statement  of  the  Problem  .....................................................................................................................  7   Research  Question  ................................................................................................................................  10   Significance  of  the  Study  .....................................................................................................................  11   Conceptual  Framework  .......................................................................................................................  12   Definition  of  Terms  ...............................................................................................................................  13   Purpose  of  Study  ....................................................................................................................................  15   Limitations  and  Delimitations  ..........................................................................................................  15   Chapter  2:  Literature  Review  ..................................................................................................  17   Identity  Theory  .......................................................................................................................................  19   Psychosocial  Identity  ..........................................................................................................................................  19   Sociological  Identity  ............................................................................................................................................  21   Mathematical  Identity  ..........................................................................................................................  23   Queer  Identity  .........................................................................................................................................  25   Supports  and  Queer  Identity  .............................................................................................................  27   Investigating  Intersections  ................................................................................................................  29   Identity  and  Educational  Disparities  ..............................................................................................  33   Chapter  3:  Methodology  ............................................................................................................  38   Qualitative  Research:  Phenomenology  ..........................................................................................  38   Rationale  for  Selecting  a  Qualitative  Design  ................................................................................  44   Exemplar  Studies  of  Phenomenology  and  Identity  ....................................................................  44   Role  of  the  Researcher  .........................................................................................................................  45   Site  of  the  Study  ......................................................................................................................................  48   Participant  Selection  ............................................................................................................................  49   Interview  Questions  .............................................................................................................................  51   Data  Analysis  ...........................................................................................................................................  52   Reliability  and  Validity  ........................................................................................................................  54   Ethical  Considerations  .........................................................................................................................  55   Summary  of  Chapter  .............................................................................................................................  56   Chapter  4:  Findings  .....................................................................................................................  58   Outline  of  Findings  ................................................................................................................................  59   Avis  .............................................................................................................................................................  59   Gerald  ........................................................................................................................................................  67   Kevin  ..........................................................................................................................................................  74   Zeb  ..............................................................................................................................................................  81   Marryl  ........................................................................................................................................................  87   Tabatha  .....................................................................................................................................................  94   Statement  of  the  Findings  ................................................................................................................  102   Participants  who  use  the  term  queer  to  describe  themself  understand  queer  differently.  ....................................................................................................................................................................................  102  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity  

  vi   Community  informed  queer  identity.  ........................................................................................................  106   Support  at  school  for  being  queer  relates  to  support  for  one’s  mathematical  identity.  .....  111   Conclusion  .............................................................................................................................................  116  

Chapter  5:  Conclusion  .............................................................................................................  117   Introduction  .........................................................................................................................................  117   Epoche  .......................................................................................................................................................  55   Discussion  .............................................................................................................................................  117   Queer  identity.  .....................................................................................................................................................  117   Supports  for  a  positive  queer  identity.  .....................................................................................................  119   Identity  and  educational  disparities.  .........................................................................................................  123   Conclusion.  .................................................................................................  Error!  Bookmark  not  defined.   Implications  ..........................................................................................................................................  124   Theory.  ....................................................................................................................................................................  125   Practice.  ..................................................................................................................................................................  125   Limitations  ............................................................................................................................................  128   Suggestions  for  Future  Research  ...................................................................................................  129   Bibliography  .................................................................................  Error!  Bookmark  not  defined.   Education  .....................................................................................................................................  138   University  Teaching  Experience  ..........................................................................................  138   Publications  ................................................................................................................................  138            

 

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Abstract  

 

  vii  

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   David  J  Fischer        

Educational  disparities  have  been  examined  in  relationship  to  many  different  groups,   but  one  group  had  been  left  out  of  the  discussion  -­‐  queer  identified  students.  In  this   phenomenological  study  I  asked  the  question:  In  what  manner  is  queer  identity  and   mathematical  identity  expressed  simultaneously  for  individuals  self-­‐identified  as  LGBTQ?     This  began  a  discussion  about  the  intersection  of  queer  identity  and  mathematical   identity.  Six  participants  were  interviewed  and  commonalities  in  their  lived  experiences   were  considered.  Four  of  the  six  participants  used  the  word  queer  to  define  themselves.   Of  these  four,  there  were  two  major  ways  that  they  understood  the  word  queer,  as   stepping  outside  of  a  binary  and  as  community.  It  was  found  that  a  queer  identity  had   not  been  essentialized  for  the  four  participants.  A  major  supportive  factor  for  all  six   participants  was  having  a  sense  of  community  that  supported  their  queer  identity.  An   LGBTQ  youth  center  provided  them  all  with  that  sense  of  community.  Other  sources  of   community  included  their  family’s  of  origin,  friends,  gay-­‐identified  teachers,  and   teachers  in  general.  The  impact  of  support  received  at  school  is  examined  with   relationship  to  both  queer  identity  and  mathematical  identity.  Having  support  for  one’s   queer  identity  at  school  was  found  to  relate  to  possessing  a  stronger  mathematical   identity.  This  study  has  implications  for  the  classroom  teacher,  GSA  advisor  and  to   those  running  youth  centers.    

 

 

     

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity  

  7  

Chapter  1:  Introduction    

The  purpose  of  this  investigation  was  to  begin  developing  an  understanding  of  

how  adolescent  and  young  adult  queer  students  experience  both  queer  and   mathematical  identity  as  they  engage  in  mathematical  activities.  As  a  gatekeeper   subject,  mathematics  has  a  unique  place  in  the  educational  system.  I  argue  that  while   educational  disparities  have  been  examined  across  various  groups  of  students,  there   was  one  group  of  students  that  was  missing  among  these  investigations-­‐queer  students.   Educational  disparities  can  be  defined  as  the  unequal  opportunities  that  are   experienced  by  many  students  (Nam  &  Huang,  2011).  These  educational  disparities   have  been  explored  in  general  and  across  mathematical  settings.   Statement  of  the  Problem   Education  is  in  a  state  of  flux  in  the  U.S.  with  educational  disparities  being   framed  and  reframed  in  different  contexts  (Ladson-­‐Billings  G.  ,  2006;  Kumashiro,  2008).   These  disparities  have  been  framed  as  an  achievement  gap  as  well  as  an  opportunity   deficit  (Ladson-­‐Billings  G.  ,  2006).  No  matter  how  the  problem  is  perceived,  it  is  agreed   that  many  different  groups  of  students  are  affected  (Ladson-­‐Billings  G.  ,  2006).   Disparities  in  mathematics  performance  among  different  groups  of  students   have  garnered  particular  attention  in  public  and  academic  circles.  Mathematics   performance  first  came  to  the  attention  of  the  public  with  the  launch  of  the  Sputnik   satellite  and  the  ensuing  space  race.    In  recent  years,  mathematics  has  received   considerable  attention  because  of  fluctuating  test  scores  on  international  tests  and   measures  (U.S.  Dept  of  Education).  Within  the  US,  students  have  not  achieved  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     8   widespread  proficiency  on  the  high-­‐stakes  mathematics  tests  mandated  by  the  No  Child   Left  Behind  (NCLB)  law.       Mathematics  is  a  gatekeeper  subject  (Ayalon,  1995;  Stinson,  2004)  in  elementary   school,  high  school  and  college.    Gatekeeper  subjects  are  those  classes  that  sort  students   out  and  have  traditionally  served  to  discourage  students  from  pursuing  their  studies   (Stinson,  2004).  Mathematics  has  often  played  this  role  (Ayalon,  1995).  Students  who   study  mathematics  beyond  algebra  are  more  likely  to  go  on  to  college,  have  more  career   options  and  higher  earnings  potential  than  those  who  do  not  study  mathematics  (U.S.   Dept.  of  Education).     Two  major  influences  that  affect  whether  or  not  students  excel  in  mathematics   are  a  combination  of  positive  beliefs  about  their  ability  to  do  mathematics  and  beliefs   about  the  usefulness  of  mathematics  (Loustalet,  2009;  Rodriguez  Cazares,  2009).  While   Rodriguez  Cazares  (2009)  describes  these  features  as  a  positive  academic  identity,   Martin  (2000)  describes  these  same  traits  as  a  positive  mathematical  identity.  If  having   a  positive  mathematical  identity  is  a  factor  associated  with  students  excelling  in   mathematics,  the  question  remains:  which  groups  of  students  possess  a  positive   mathematical  identity.   Since  mathematical  identity  is  related  to  performance,  it  is  important  to  look  at   the  experiences  of  various  groups.  It  has  been  found  that  educational  disparities  in   mathematics  between  African-­‐American  and  Caucasian  students  is  wider  than  between   any  other  two  categories  (U.S.  Department  of  Education).  Hispanic  students  see  almost   as  much  of  a  gap  when  compared  with  Caucasian  students  (U.S.  Department  of   Education).  Asian-­‐American  students  have  tested  well  and  have  been  considered  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     9   “model  minority”  (Chang,  2011).  Recent  immigrants  do  not  fare  well  in  high-­‐stakes   testing  (Ladson-­‐Billings  G.  ,  2006).  While  girls  excel  in  basic  mathematics,  they  do  not   do  as  well  as  boys  in  higher-­‐level  mathematics,  nor  do  they  persist  in  very  high   numbers  in  higher-­‐level  mathematics  (Catsambis,  1994).    When  considering  the  effect   that  low  socioeconomic  status  (low  SES)  has  on  students’  mathematics  attainment,   educational  disparities  are  as  great  between  low  SES  students  and  middle  class   students,  as  those  between  Caucasian  and  Hispanic  students  (Gamoran,  Porter,   Smithson,  &  White,  1997).  As  can  be  seen  from  these  findings,  educational  disparities   are  widespread  and  persistent.     While  examining  these  different  groups  has  been  useful,  there  are  groups  that   we  know  little  about  as  it  pertains  to  educational  disparities,  particularly  in   mathematics.    Lesbian,  gay,  bisexual,  transgender  (LGBT),  or  queer  students  are  an   example  of  such  a  group.  Queer,  or  non-­‐heteronormative  students,  have  rarely  been   considered  in  the  study  of  any  of  the  subject  areas.   LGBT  youth  face  many  challenges  both  in  k-­‐12  education  as  well  as  higher   education.  According  to  the  Gay  Lesbian  &  Straight  Education  Network  (GLSEN)  (2011),   eighty-­‐one  percent  of  LGBT  students  have  experienced  harassment  in  the  past  year,  and   six  in  ten  LGBT  students  feel  unsafe  at  school.  One-­‐third  of  LGBT  students  reported   skipping  school  at  least  once  per  month  because  they  felt  unsafe  at  school.  Twenty   seven  percent  of  LGBT  students  report  being  physically  harassed,  and  twelve  percent   physically  assaulted  because  of  their  sexual  orientation.  Additionally,  sixty-­‐four  percent   of  LGBT  students  report  being  verbally  harassed,  twenty-­‐seven  percent  physically   harassed  and  twelve  percent  physically  assaulted  because  of  their  gender  expression.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     10   As  a  result  of  oppression  and  harassment  LGBT  students  experience  increased  stress   related  mental  illness  (GLSEN,  2011).    While  there  are  no  direct  data  on  the  academic   performance  in  mathematics  for  LGBT  students,  there  are  data  for  LGBT  students  in   general.  LGBT  students  who  experience  harassment  in  school  report  that  they  plan  to   drop  out  of  high  school  at  a  rate  that  is  seven  times  higher  than  non-­‐LGBT  students   (GLSEN,  2011).  LGBT  students  also  report  missing  more  school  as  a  result  of  feeling   unsafe.  Missing  school,  along  with  an  unsafe,  hostile  school  environment,  has  a  direct   impact  on  academic  performance  (GLSEN,  2011)   Research  examining  disparities  in  achievement  has  assisted  researchers  when   looking  at  various  groups  of  students.  Some  of  this  research  examines  mathematics  in   particular,  as  it  holds  such  importance  for  the  public  and  academia.  The  research   explored  groups  that  do  and  do  not  excel  in  mathematics.  The  challenge  within   mathematics  education  is  that  we  should  now  consider  queer  students,  as  they   represent  an  increasingly  visible  minority.  Research  shows  that  mathematical  identity   is  an  important  element  in  considering  how  students  perform  in  mathematics.  Because   students  with  a  queer  identity  are  underrepresented  in  research,  there  was  a  need  to   explore  their  performance  as  it  reflects  the  intersection  of  queer  identity  with   mathematical  identity.   Research  Question    

The  research  question  for  this  study  defines  the  bracketed  area  that  has  been  

explored.  The  bracketed  area  is  a  particular  set  of  experiences  of  the  participants  in  the   study,  told  from  a  first  person  point  of  view.  The  research  question  was  as  follows:  In  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     11   what  manner  is  queer  identity  and  mathematical  identity  expressed  simultaneously  for   individuals  self-­‐identified  as  LGBTQ?     Significance  of  the  Study   This  study  represents  the  first  of  its  kind  to  look  specifically  at  the  interface   between  queer  identity  and  mathematical  identity.  As  such,  this  study  adds  to  the   literature  in  a  unique  way.  Previous  studies  have  only  explored  ‘queering’  the  subject   area,  i.e.  making  the  subject  less  male  centric  (Mendick,  2006).  Mendick  explored   mathematics  with  an  eye  toward  the  performance  of  mathematics  in  a  manner  that   favors  male  identified  students.  While  other  authors  define  queering  differently,  for   Mendick  it  is  a  matter  of  opening  the  field  of  mathematics  and  mathematics   performance  to  non-­‐male  identified  students.  The  distinction  between  the  proposed   study  and  Mendick’s  work  is  the  difference  between  the  who  (identity)  and  the  how   (performance).  This  distinction  is  important  for  understanding  what  is  happening  to  a   group  of  students  and  broadens  classroom  teachers’  and  academics’  understanding  of   who  is  worthy  of  learning  mathematics,  rather  than  how  mathematics  is  taught.    

As  discussed  earlier,  there  is  a  need  to  include  queer  students  because  they  have  

not  been  the  focus  of  study  in  mathematics  education.  Further,  by  exploring  queer   students  as  they  relate  to  mathematics,  it  opens  the  field  to  explore  queer  students  in   other  subject  areas.  Ultimately  this  study  adds  to  the  literature  by  furthering  the   understanding  of  queer  students  who  study  mathematics  and  what  that  means  to  them.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Conceptual  Framework    

  12  

The  conceptual  framework  of  this  study  is  situated  within  identity  theory  and  

phenomenology.    Exploring  the  complex  nature  of  the  self  and  how  one  sees  oneself  in   relation  to  others  is  the  basis  of  identity  theory  (Burke  &  Stets,  2009).  The  nature  of  self   has  several  manifestations  within  the  various  views  of  self.  One  of  these  manifestations   is  psychosocial  identity.  Of  the  understandings  of  self  considered  within  this  proposal,   psychosocial  identity  was  the  first  to  be  explained  (Erikson,  1964,1980).  Since   psychosocial  identity  can  be  seen  as  unchanging  at  times,  a  sociological  approach  to   identity  is  also  used  (Burke  &  Stets  2009;  Gee  1999;  Sfard  &  Prusak,  2005).      

Within  the  context  of  this  study  I  employ  both  a  psychosocial  and  a  sociological  

explanation  of  identity.  I  emphasize  sociological  definitions  that  allow  for  changes  in   one’s  understanding  of  oneself  (Gee,  1999;  Sfard  &  Prusak,  2005).  One  reason  to  move   toward  a  sociological  definition  of  identity  is  the  application  of  queer  theory  to  the   understanding  of  queer  identity  (Wilchins,  1997).  Queer  theory  says  that  definitions  are   always  changing,  thus  a  definition  of  queer  identity  that  allows  for  movement  is  needed.   Sfard  and  Prusak  (2005)  go  so  far  as  to  say  that  identity  is  simply  what  you  say  it  is.   This  definition  broadens  the  field  even  further.    

In  this  work  I  have  described  what  it  means  to  experience  a  particular  

phenomenon.  Describing  lived  experiences,  or  phenomena,  is  done  effectively  using   phenomenology  (Moustakas,  1994;  Van  Manen,  1990).  Phenomenology  is  often  used  to   explain  emergent  ideas  within  research  (Wilson  &  Washington,  2008).    It  focuses  on  the   stories  of  the  participants  in  a  way  that  other  qualitative  methods  do  not.  This  is   because  phenomenology  allows  the  researcher  to  find  the  meaning  in  the  actual  life  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     13   experiences  of  the  study  participants.  Therefore,  he  can  work  to  distill  the  essence  of   the  experiences  that  is  greater  than  the  single  experience  of  one  participant   (Moustakas,  1994).  This  essence  is  not  an  essentialization  of  the  phenomenon,  but   rather  it  is  a  discovery  of  the  universality  of  the  event  in  question  (Van  Manen,  1990).    

Another  reason  for  using  phenomenology  lies  in  the  unique  place  of  the  

researcher  within  the  work  (Moustakas,  1994).  This  method  is  most  effective  when  the   researcher  has  some  first-­‐hand  knowledge  of  the  experience  in  question.  This  forces  the   researcher  to  examine  his  own  bias,  and  demands  that  he  both  set  aside  his  experience   and,  at  the  same  time,  use  his  knowledge  of  the  experience  to  understand  the   experiences  of  the  participants  (Smith,  Flowers,  &  Larkin,  2009).  This  is  known  as   bracketing  of  the  experience.  Through  this  bracketing  of  the  experience,  the  researcher   becomes  one  with  the  phenomena  in  a  way  that  does  not  happen  with  other   methodologies  (Wilson  &  Washington,  2008).   Definition  of  Terms    

In  order  to  have  a  common  understanding,  three  particular  terms  used  in  this  

study  have  been  defined.  It  is  important  to  define  these  terms  as  they  form  the  basis  of   this  investigation.  The  terms  that  have  been  defined  are  identity,  mathematical  identity,   and  queer  identity.  These  terms  are  defined  as  they  are  used  uniquely  in  this  study.   Identity  is  a  performative  action  that  defines  the  self  (Lawler,  2008).  That  action   is  both  conscious  and  subconscious.  Within  this  understanding  of  identity  there  is  a   tension  about  the  authenticity  of  identity.  It  is  often  thought  that  to  be  authentic,   identity  must  come  from  some  deep  place  within  us.  However,  a  performative  idea  of  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     14   identity  recognizes  identity  as  being  either  deep  or  shallow.  In  this  way,  identity  can  be   seen  as  a  changeable  and  changing  aspect  of  the  self.     The  definition  of  mathematical  identity  includes  two  separate  but  related   characteristics.  The  first  is  a  performative  characteristic  (Martin,  2000).  The   performative  characteristic  of  mathematical  identity  includes:  “the  ability  to  do   mathematics,  having  the  motivations  and  strategies  needed  to  obtain  mathematics   knowledge,  understanding  the  importance  of  one’s  mathematical  knowledge,  and   understanding  one’s  opportunities  and  constraints  in  mathematical  contexts”  (p.  19).   Mathematical  identity  also  includes  a  perceptual  characteristic.  The  perceptual   characteristic  of  mathematical  identity  pertains  to  the  individual’s  perception  of  their   ability  to  perform  mathematics  (Sfard  &  Prusak,  2005).   The  definition  of  queer  Identity  includes  three  dimensions  that  can  at  times  be   used  interchangeably.  Queer  identity  may  refer  to  someone  who  is  lesbian,  gay,   bisexual,  or  transgender  (LGBT).  In  this  manner,  queer  identity  is  a  shorthand  way  to   categorize  all  of  these  various  labels.  Queer  identity  can  also  be  used  as  a  term  referring   to  an  individual’s  understanding  of  self  across  the  spectrum  of  non-­‐heteronormative   sexual  identity  (Wilchens,  1997).  Lastly,  the  definition  of  queer  identity  reflects  a   political  position.  It  is  a  word  choice  that  has  been  reclaimed  from  the  past  when  it  was   often  used  negatively  when  referring  to  a  particular  group  of  individuals  (Kumashiro,   2002).  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Purpose  of  Study  

  15  

The  purpose  of  this  study  was  to  describe  how  having  a  queer  identity  affects  an   individual’s  beliefs  about  one’s  mathematical  abilities  and  performance.    In  addition,   this  study  described  what  it  meant  to  understand  one’s  self  as  queer.   Limitations  and  Delimitations    

This  study  is  limited  in  scope  for  two  reasons.  First,  because  of  the  number  of  

study  participants  and  the  nature  of  the  methodology,  the  findings  are  not   generalizable.  Second,  this  study  did  not  seek  to  quantify  any  educational  disparities   that  were  discovered  among  the  study  participants.  Rather,  I  sought  to  explain  the  state   of  the  mathematical  identities  of  a  group  of  queer  students.  In  so  doing,  I  began  a   conversation  and  a  research  agenda  that  will  require  further  exploration.      

This  research  allowed  for  description  of  a  particular  group  of  participants  and  

thus  points  the  way  forward  for  further  research  in  the  area.  The  group  of  participants   was  homogeneous  in  age,  as  this  allowed  an  understanding  of  a  particular  subset  of  all   queer  people  to  be  better  understood.  This  study  explored  the  intersection  of  queer   identity  and  mathematical  identity.  Intersections  of  identity  are  when  two  or  more   identities  manifest  themselves  simultaneously  (Burke  &  Stets,  2009).  The  intersection   of  queer  and  mathematical  identities  was  chosen  because  the  field  was  new  and   therefore,  yet  to  be  described.     Rather  than  a  quantitative  analysis  of  queer  students  in  mathematics,  this   qualitative  problem  was  chosen  for  two  reasons.  First,  the  issues  for  queer  students  in   mathematics  have  not  yet  been  described.  Second,  the  current  political  climate  makes  it  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     16   difficult  to  find  a  large  enough  sample  for  what  is  practical  in  dissertation  work  to  be   able  to  make  generalizations.        

 

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Chapter  2:  Literature  Review  

  17  

The  study  of  identity  is  a  complex  phenomenon.  Theoretically,  identity  manifests   itself  through  two  constructs:  psychosocial  identity  and  sociological  identity.   Psychosocial  identity  explains  identity  as  self-­‐knowledge  that  is  defined  in  late   adolescence  (Erikson,  1964,1980).  While  there  has  been  movement  towards  seeing   identity  as  somewhat  fluid  as  a  person  matures,  there  is  still  a  more  or  less  fixed  quality   to  a  psychosocial  definition  of  identity  (Erikson,  1980).  The  sociological  construct  of   identity  was  also  based  on  the  psychosocial  construct  of  identity,  but  has  evolved  to   include  more  mutable  identities  (Gee,  2000).  Of  the  two,  the  one  that  most  closely   reflects  the  purposes  of  this  study  is  the  sociological.   Within  a  sociological  understanding  there  are  multiple  ways  to  view  identity.   Burke  and  Stets  (2009)  list  three  overarching  categories  of  sociological  identity.  These   are  role  identity,  social  identity  and  person  identity.    Role  identity  is  based  on  a  role   that  a  person  plays  such  as  teacher  or  student.    Social  identity  is  based  on  membership   in  a  group  (Burke  &  Stets,  2009).  Social  identity  sets  up  a  situation  in  which  there  is  an   “in  group”  and  an  “out  group”  such  as  being  a  member  of  the  Glee  club  or  not  being  a   member  of  the  Glee  club.  Person  identity  refers  to  the  traits  that  make  the  individual   unique  (Burke  &  Stets,  2009),  such  as  being  kind,  or  having  a  wry  sense  of  humor.     Gee  (1999)  has  defined  additional  categories  of  sociological  identity.    These   include  natural,  institutional,  affinity  group,  and  discourse  identities.    Natural  identity  is   a  characteristic  that  one  cannot  change  such  as  being  a  twin,  or  having  blue  eyes.   Institutional  identity  is  bestowed  upon  a  person  by  an  institution,  such  as  a  professor  or   a  doctor  (Gee,  1999).  Affinity  group  identity  is  defined  as  membership  in  a  particular  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     18   group  such  as  the  Republican  Party  or  the  Elks  Lodge.  Discourse  identity  is  based  on   how  one  speaks  about  one’s  experience  with  a  particular  subject  and  how  others  speak   about  you  in  reference  to  that  subject.  For  example,  Pat  often  speaks  about  her  love  of   mathematics.  Principal  Jones  often  says  that,  “Pat  is  the  smartest  math  student  in  the   school.”   One  way  to  elaborate  upon  the  understanding  of  identity  is  through  intersection.   This  is  useful;  as  it  helps  us  better  understand  the  essence  of  the  relationship  between   the  two  identities.    The  relationship  between  the  two  identities  is  one  where  the   expression  of  one  identity  has  an  effect  on  the  other  identity  being  expressed  (Burke  &   Stets,  2009).  There  is  scholarship  that  intimates  that  one  identity  has  the  ability  to   cause  the  other  to  be  foregrounded  as  a  “leading”  identity  (Black,  Wiliams,  Hernandez-­‐ Martinez,  Davis,  Pamaka,  &  Wake,  2010).   Certain  identity  definitions  were  developed  with  mathematics  in  mind  (Cobb,   Gresalfi,  &  Hodge,  2009;  Sfard  &  Prusak,  2005).    Martin  (2000)  contributed  to  the   definition  of  mathematical  identity  that  is  used  in  this  study.  Martin  (2000,  2004,  2009)   formulated  the  idea  of  intersecting  mathematical  identity  with  other  identities.  His   work  grew  out  of  the  work  of  Ladson-­‐Billings  (1995).  The  idea  of  intersecting   mathematical  identity  with  another  identity  is  useful  in  helping  to  see  how  one  identity   influences  another.   In  order  to  examine  the  intersection  of  queer  and  mathematical  identities  it  is   necessary  that  I  explore  the  terminology  associated  with  queer  identity:  gay,  lesbian,   bisexual,  and  trangender.  I  will  look  to  prior  research  to  define  these  terms  as  well  as  to  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   develop  the  concept  of  queer  identity.    I  will  also  explore  queer  identity  as  a  

  19  

sociologically-­‐based  discourse  identity.     While  there  is  no  literature  that  looks  directly  at  the  intersection  of  queer   identity  and  mathematical  identity,  there  is  literature  that  examines  queer  identity  and   academics  (Venzant  Chambers  &  McCready,  2011).  Additionally  there  is  literature  that   discusses  the  “queering”  of  mathematics  (Mendick,  2006).  Mendick  defines  the   queering  of  mathematics  as  making  mathematics  less  male-­‐centric.  I  will  also  explore   expressions  of  queer  theory  or  queer  thought  in  the  subject  areas  of  English,  and   Science  (Blackburn  &  Buckley,  2004;  Snyder  &  Broadway,  2004).  By  looking  at  all  of  this   research,  I  will  be  positioned  to  look  at  the  intersection  of  queer  identity  and   mathematical  identity.    Identity  Theory   Identity  can  be  understood  and  studied  through  two  theoretical  constructs,   psychosocial  identity  and  sociological  identity.  In  the  following  section  I  will  describe   psychosocial  identity  and  sociological  identity.   Psychosocial  Identity    Within  his  work  The  Eight  Stages  of  Man,  Erickson  (1964,  1980)  develops  a   psychosocial  construct  of  identity  that  refers  to  the  internal  processes  of  the  individual.   He  describes  psychosocial  identity  as  being  subjective  and  objective,  social  and   individual  (Erikson,  1964).  Within  the  eight  stages  there  are  psychosocial  crises  that   must  be  resolved.  These  include,  trust  vs.  mistrust;  autonomy  vs.  shame  and  doubt;   initiative  vs.  guilt;  industry  vs.  inferiority;  identity  vs.  role  confusion;  intimacy  vs.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   isolation;  generativity  vs.  stagnation;  and  ego  integrity  vs.  despair  (Erikson,  

  20  

1964,1980).     The  eight  crises  are  sequential  and  each  one  builds  off  of  the  previous  and  affects   the  next.  That  is,  one  cannot  move  from  one  stage  to  the  next  without  some  resolution   of  the  conflict  involved  in  the  previous  stage  (Erikson,  1964).    While  each  of  the  crises   are  influential  stages  in  the  development  of  identity,  I  will  focus  on  the  identity  vs.  role   confusion  crisis.  In  the  identity  vs.  role  confusion  crisis,  the  primary  conflict  is  whether   an  individual  can  develop  a  stable  sense  of  self  that  will  continue  on  into  adulthood   (Erikson,  1964).  In  this  stage  of  development  the  main  question  is  “who  am  I?”  If  the   previous  crises  have  been  successfully  negotiated  and  the  adolescent  has  developed  a   sense  of  trust  and  industry,  there  is  a  greater  chance  of  success  in  negotiating  the  crisis   of  identity  vs.  role  confusion  as  well.  Some  of  the  aspects  of  this  crisis  include   negotiating  a  vocation  and  sexual  orientation.  The  reason  to  focus  on  this  crisis  is  that  it   occurs  in  late  adolescence  to  early  adulthood,  the  same  age  as  the  participants  for  this   study.   An  understanding  of  psychosocial  identity  has  both  affordances  and  constraints   when  applied  to  this  study.  One  affordance  of  this  understanding  of  identity  is  that   identity  is  simultaneously  individual  and  social.  This  allows  for  the  identity  to  be   expressed  by  the  individual  in  a  social  setting  and  therefore  studied  more  easily.     A  second  aspect  of  psychosocial  identity  is  that  it  is  understood  as  a  stage  of   development  that  occurs  during  late  adolescence,  and  is  then  more  or  less  fixed  through   adulthood  (Erikson,  1964,1980).  This  can  be  seen  as  both  a  constraint  and  an  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     21   affordance.  The  affordance  of  this  aspect  to  the  study  is  that  the  participants  age,  late   adolescence,  is  developmentally  appropriate.  It  is  a  constraint  in  that  Erickson  sees   identity  development  as  being  rather  fixed  once  it  is  acquired.  He  later  modified  his   view  somewhat  (Erikson,  1980)  to  allow  for  some  further  development  of  identity  into   adulthood.  However,  he  concluded  that  most  identity  development  is  fixed  in   adolescence.  This  perspective  is  problematic  when  studying  queer  identity,  as  queer   theory  recognizes  fluidity  and  changes  in  understanding  of  sexual  identity  throughout   adulthood  (Wilchins,  1997).   Sociological  Identity   Stryker  (1980)  developed  sociological  identity  from  psychological  identity.  An   early  proponent  of  a  sociological  construct  of  identity  Stryker  (1980)  categorizes   identity  as  role,  person  and  social.  Role  identities  are  based  on  the  role  that  a  person   plays,  such  as  teacher,  student  or  friend  (Burke  &  Stets,  2009).  Early  theorists  saw  role   identities  as  being  the  preeminent  determinant  for  an  individual’s  sense  of  self  (Burke   &  Stets,  2009;  Stryker,  1980).  Role  identity  is  seen  to  provide  structure,  organization   and  meaning  to  the  individual  in  any  given  situation.     Person  identities  are  the  idiosyncrasies  that  make  the  individual  unique  (Burke   &  Stets,  2009).  Examples  of  person  identity  would  be  being  kind  or  generous.  This   identity  is  based  on  one’s  own  beliefs  about  oneself.  It  is  often  tied  to  the  idea  of   authenticity;  whether  the  individual  feels  she  is  being  true  to  herself.     Social  identity  is  based  on  membership  in  a  social  group  (Burke  &  Stets,  2009).  A   situation  is  established  in  which  there  is  an  “in  group”  and  an  “out  group”;  that  is  to  say  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     22   that  one  is  either  a  member  of  a  club  or  not.  Who  is  part  of  the  group  is  based  on  a  set  of   criteria  that  is  often  associated  with  gender,  race,  and  age  (Burke  &  Stets,  2009).   Another  way  to  understand  sociological  identity  is  provided  by  Gee  (1999).  Gee   describes  four  types  of  identity:   1. Nature  identity  is  when  there  is  no  power  over  the  natural  forces  that  cause   nature  identity,  such  as  being  a  twin  or  having  blue  eyes;   2. Institution  identity  is  when  the  individual  is  bestowed  an  identity  by  an   institution,  such  as  the  teacher  who  is  bestowed  the  identity  by  the  state  that   licenses  and  the  school  that  employs  her;   3. Discourse  identity  is  based  on  what  one  says  about  one’s  self  and  what  others   say  about  you,  such  as  being  labeled  as  learning  disabled  or  gifted;  and   4. Affinity  identity  is  a  characteristic  shared  by  a  group,  such  as  advanced   placement  (AP)  students  or  children  with  ADHD.   Gee’s  theory  uses  both  fixed  identities  (such  as  natural  and  institutional)  and  fluid   identities  (such  as  discourse  and  affinity).  While  Gee  sees  the  act  of  discourse  as   essential  to  discourse  identity  development,  there  is  also  recognition  of  the  role  that   discourse  plays  in  selection  of  a  group  within  affinity  identity  (Gee,    1999).     An  affordance  of  the  sociological  construct  of  identity  is  that  it  provides  us  with   an  understanding  of  the  intersection  of  identities.  An  intersection  is  when  two  identities   manifest  themselves  simultaneously  within  the  individual  (Burke  &  Stets,  2009).  This  is   important  as  it  allows  us  to  study  the  intersection  of  a  queer  identity  and  mathematical   identity.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Mathematical  Identity    

  23  

Mathematical  identity  has  been  explained  theoretically  in  several  different  ways  

(Cobb,  Gresalfi,  &  Hodge,  2009;  Sfard  &  Prusak,  2005;  Somers,  1994).  Each  of  these   theoretical  perspectives  examines  different  aspects  of  mathematical  identity.  Cobb  et  al.   (2007)  fixed  the  student’s  mathematical  identity  for  the  purposes  of  testing.  Once  a   teacher  understands  a  students  already  fixed  mathematical  identity  they  can  then  use   that  information  to  increase  test  scores  from  year  to  year.  Cobb  et  al.    considered  the   formation  of  identity  in  a  psychosocial  sense;  a  universal  process  with    a  student’s   mathematical  identity  being  fixed  in  adolesence.  Cobb’s  work  considered  mathematical   identity  soley  for  the  purpose  of  understanding  and  increasing  test  scores.  While  this   fits  Cobb’s  purposes,  it  is  problematic  in  that  it  essentializes  the  student’s  mathematical   identity  and  fails  to  consider  that  other  types  of  identity  may  impact  the  mathematical   identity  of  the  student  over  time.     Another  way  to  consider  mathematical  identity  is  in  using  a  sociological  construct   that  is  discourse-­‐based  (Sfard  &  Prusak,  2005).    A  discourse-­‐based  identity  is  defined  by   the  narratives  that  one  tells  about  oneself,  allowing  identity  to  change  as  one’s  beliefs   change.  There  can  be,  however,  problems  with  narratives  as  Somers  (1994)  has  pointed   out.    For    narratives  to  be  useful,  Somers  argued,  they  need  to  move  from  being  simply   stories,  to  one  of  the  four  types  of  narratives  listed  below:   1. Ontological  narratives  are  used  to  define  who  we  are.  Ontological  narratives  are   fluid,  allowing  for  changes  in  identity;     2. Public  narratives  are  cultural  and  institutional  narratives  that  are  larger  than  the   “self.”  These  narratives  come  from  our  families,  schools  and  the  government;  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     24   3. Meta  narratives  are  the  types  of  narratives  that  make  up  most  of  our  sociological   theories.  They  are  the  stories  about  the  stories;  and   4. Conceptual  narratives  are  the  explanations  that  are  constructed  by  social   researchers.     Among  Somers’  narratives,  ontological  narratives  most  closely  fit  with  Sfard’s  and   Prusak’s  (2005)  discourse-­‐based  view  of  mathematical  identity.  Using  this   understanding,  Sfard  and  Prusak  found  that  the  mathematical  identity  of  students  can   and  do  change  as  students  view  themselves  as  being  more  or  less  successful  under   various  circumstances.     Martin  (2000)  defined  mathematical  identity  as  having  the  following  qualities:   1. The  ability  to  do  mathematics;   2. Having  the  motivations  and  strategies  needed  to  obtain  mathematics  knowledge;   3. Understanding  the  importance  of  one’s  mathematical  knowledge;   4. Understanding  one’s  opportunities  and  constraints  in  mathematical  contexts  (p.   19).   For  the  purpose  of  the  proposed  study  a  combination  of  Martin’s  (2000)   definition  and  Sfard  and  Prusak’s  (2005)  definition  of  mathematical  identity  will  be   used.  This  is  because  Martin’s  definition  refers  to  performance  of  mathematics,  an   aspect  of  mathematical  identity  that  helps  to  define  how  one  sees  one’s  self  in   relationship  to  mathematics.  On  the  other  hand  Sfard  and  Prusak  focus  directly  on  a   discourse-­‐based  definition  of  mathematical  identity.  Discourse-­‐based  refers  to  the   narratives  that  one  tells  about  one’s  self.  These  discourse-­‐based  identities  are   perceptual  in  nature.  Thus,  they  refer  to  one’s  perception  of  their  ability  to  do  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   mathematics.  While  each  of  these  definitions  is  useful  in  their  own  right,  the  

  25  

combination  adds  a  depth  that  is  more  useful.   Queer  Identity   Identifying  as  queer  is  political,  dynamic  and  fluid  (Kumashiro,  2002;  Wilchens,   1997).  According  to  Kumashiro,  it  is  political  because  queer  is  a  word  that  has  been   reclaimed  by  activists  from  a  negative  past.  Wilchens  states  it  is  dynamic  and  fluid   because  what  is  means  to  be  queer  can  change  for  the  individual  as  much  and  as  often   as  one  desires.  I  use  the  term  queer  identity  throughout  this  paper,  rather  than  LGBT   identity  for  a  variety  of  reasons.     Gay  and  lesbian  identity  development  has  been  understood  to  be  an  affinity   group  identity  (Alderson,  2003;  Guess,  1995).  Further,  as  the  forereferenced  authors   point  out,  these  identities  have  been  essentialized  and  normatized  to  be  white  and   middle  class.  While  bisexuality  has  not  been  essentialized,  there  are  numerous  and  fluid   ways  to  describe  bisexual  identities  (Jeffries,  1999).  It  is  beyond  the  scope  of  this  work   to  describe  all  the  variations  that  can  encompass  a  bisexual  identity.  The  fluidity  of  the   descriptions  would  tend  to  argue  for  a  definition  of  queer  identity  rather  than  trying  to   capture  all  the  variations  of  bisexual  identity  (Jeffries,  1999).   Transgender  identity  is  another  term  with  multiple  meanings  (Reis,  2004).   Transgender  identity  is  more  problematic  to  define  than  gay,  lesbian,  or  even  bisexual.   This  is  because  there  may  or  may  not  be  an  element  of  sexual  identity  in  the  definition.   Transgender  may  refer  to  intersexed  individuals  (those  with  indeterminate  sexual  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     26   organs);  those  who  feel  they  were  born  the  wrong  sex;  or  those  who  are  somewhere  in   between  these  other  definitions.  The  scope  of  this  study  is  not  to  look  specifically  at   those  with  a  transgender  identity,  but  also,  there  is  no  reason  to  exclude  those  same   individuals.   Because  of  the  issues  in  using  the  specific  terms  of  gay,  lesbian,  bisexual  or   transgender  identity,  queer  identity  will  be  used  instead.  Queer  identity  has  been   defined  as  discourse-­‐based  (Wilchins,  1997),  meaning  what  people  say  about  you  and   what  you  say  about  yourself  (Gee,  1999).  The  benefit  of  understanding  queer  identity  as   a  discourse-­‐based  identity  is  that  discourse-­‐based  identities  resist  essentialization   (Kumashiro,  2002).  Being  understood  as  a  discourse-­‐based  identity  allows  for  the   fluidity  of  sexuality  that  is  understood  to  be  the  reality  of  queer  identified  individuals.     “Queer”  began  as  a  derogatory  word  that  activists  have  worked  to  reclaim   (Kumashiro,  2002),  understanding  that  discourse-­‐based  means  that  “it”  is  what   someone  says  “it”  is.  In  this  meaning,  queer  is  citational.  Citational  is  defined  as  gaining   meaning  from  the  way  a  word  is  used,  or  cited,  by  a  group  of  people.  As  the  group   grows,  the  citation  begins  to  gain  wider  acceptance  (Free  Online  Dictionary,  2011).   While  not  exclusive  of  the  first  meaning,  queer  is  distinct  in  that  being  discourse-­‐based   allows  for  people  who  do  not  fit  within  the  labels  gay,  lesbian,  bisexual,  or  transgender   to  be  included.       Queer  becomes  everyone  who  is  not  normatively  heterosexual.  It  is  a  non-­‐ normative  state;  an  attempt  to  define  it  normatively  causes  it  to  morph  and  change  so   that  it  is  no  longer  what  you  think  it  is.  Queer  is  inclusive  rather  than  exclusive  and  it  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     27   seeks  to  trouble  the  normative,  the  essential  and  the  definitive  label  (Britzman,  1998;   Kumashiro,  2002;  Wilchins,  1997).   Wilchens  (1997)  argues  against  an  LGBT  label-­‐based  natural  or  affinity  identity   and  outlines  many  of  the  problems  of  affinity  identity  and  affinity  politics.  Affinity   identity  is  an  identity  that  is  predicated  on  being  a  member  of  a  group.  Natural  identity   is  based  on  an  immutable  trait  such  as  eye  color.    A  natural  identity  lacks  movement   and  fluidity  and  is  therefore  problematic.  There  is  no  room  to  explain  the  lesbian  who   chooses  to  sleep  with  men,  or  to  explain  bisexuality  at  all.  If  one  is  born  attracted  to  a   certain  sex,  natural  identity  says  that  this  is  fixed.  Natural  identity  also  raises  the   question  of  gender.  By  normatizing  gender  and  sex,  we  force  gender  and  sex  into   binaries  and  this  raises  other  issues.  Wilchins  (1997)  goes  on  to  state  the  limits  of   affinity  identity.  One  only  need  worry  about  the  issues  of  a  single  letter  L,  G,  B  or  T.   Queer  has  been  set  up  to  work  against  a  single  mentality.  Queer  is  more  encompassing,   but  not  just  of  letters.  Rather,  it  includes  movement,  fluidity  and  recognizes  social   construction  of  sex  and  gender  (Britzman,  1998).   Supports  and  Queer  Identity   There  appears  to  be  several  factors  that  influence  the  development  of  a  positive   queer  identity  (Blackburn,  2004;  Blackburn  &  McCready,  2009;  Lee,  2002;  Ma'yan,   2011;  Munoz-­‐Plaza,  Quinn,  &  Rounds,  2002).  These  include  attending  a  school  with  a   gay  straight  alliance  (GSA),  having  a  safe  and  supportive  school  environment,  having  an   out  of  school  support,  such  as  a  LGBT  youth  center,  and  having  supportive  friends.   Blackburn  (2004)  speaks  to  the  need  to  have  the  support  from  an  organization   such  as  The  Attic  Youth  Center  in  Philadelphia,  PA.  The  Attic  provides  various  services  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   for  youth  from  age  14-­‐23.  These  services  range  from  counseling,  to  recreational  

  28  

services,  to  a  speakers  bureau.  The  speakers  bureau  is  a  group  of  students  within  the   organization  of  The  Attic  who  are  trained  to  go  to  schools  and  other  organizations  and   conduct  trainings.  These  trainings  consist  of  the  youth  sharing  their  stories  of  coming   out  and  what  their  experieinces  have  been  like.  Blackburn  reports  that  through  the   activities  of  The  Attic,  but  specifically  through  the  speakers  bureau,  young  queer  people   have  the  opportunity  to  gain  agency  and  support  that  helps  them  to  develop  a  positive   queer  identity.   This  ability  to  develop  a  positive  queer  identity  is  not  limited  to  participating  in  a   speakers  bureau.  Blackburn  and  McCready  (2009)  survey  the  literature  on  the  topic  of   supports  for  queer  youth  and  arrive  at  several  conclusions.  They  find  that  not  only  are   out  of  school  supports,  such  as  LGBT  youth  centers  helpful,  but  also  that  Gay  Straight   Alliances  (GSA’s)  can  be  a  critical  link  for  youth.  GSA’s  as  a  support  to  developing  a   positive  queer  identity  has  also    been  supported  in  other  work  as  well  (Lee,  2002).  Lee   goes  further  than  Blackburn  and  McCready  by  showing  that  not  only  does  a  GSA   promote  a  positive  queer  identity,  but  also  a  positive  academic  identity.  The   improvement  in  academic  identity  is  postulated  to  be  as  a  result  of  the  support  the   youth  received  from  the  GSA  and  that  the  youth  feel  better  about  themselves  and  about   school.  Some  of  this  is  due  to  a  lessoning  of  a  feeling  of  isolation,  a  feeling  born  out  by   Blackburn  and  McCready.   Ma’ayan  (2011)  takes  a  different  approach  to  showing  support  for  a  positive   queer  identity.  She  explores  a  case  study  and  looks  at  the  intersection  of  whiteness  with   queer  identity  to  examine  resiliancy.  It  is  interesting  to  note  that  the  participant  in  the  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     29   study  has  a  GSA  in  her  middle  school  as  well  as  the  support  of  teachers  and  her  family.   Ma’ayan  attributes  most  of  the  participants  resiliancy  to  being  white  and  upper  middle   class  rather  than  the  supports  reported  on  earlier.  Thus,  the  emphasis  in  this  study  is  on   using  a  position  of  privelege  to  gain  power  in  this  situation.  The  problem  with  the   conclusions  in  this  study  are  what  do  you  do  if  you  do  not  start  from  a  position  of   economic  or  racial  privelege?  Where  do  poor  youth  of  color  find  agency  around  LGBT   issues  if  they  do  not  have  privelege?   Investigating  Intersections   A  way  to  make  mathematical  identity  more  useful  is  to  look  at  intersection:  how   different  identities  manifest  themselves  at  the  same  time.  Martin  (2000)  examined  the   intersection  of  mathematical  identity  with  racial  identity,  and  thus  began  developing  an   understanding  of  each  person’s  unique,  individual  experiences.   Martin  (2000,  2006)  reported  on  African  American  parents  who  may  have  a   negative  mathematical  identity  while  still  seeing  the  importance  of  mathematics.  These   same  parents  were  able  to  discuss  their  racial  identities  and  all  reported  having  faced   discrimination  and  oppression  in  the  classroom.  This  oppression,  while  it  may  not  be   the  direct  cause  of  the  poor  mathematical  identities  reported,  certainly  had  a  part  to   play  in  their  motivation  to  perform  mathematics.  These  same  subjects  also  claimed  that   their  children  were  the  victims  of  oppression  at  the  hands  of  teachers  and   administrators.  Further,  all  of  the  parents  interviewed  reported  that  they  felt  they  could   have  gone  further  in  their  careers  had  they  taken  more  mathematics  courses.   Additionally,  many  reported  that  they  were  working  on  mathematics  courses  in  order   to  progress  in  their  careers.  It  was  particularly  surprising  that  Martin  did  not  directly  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     30   explore  the  racial  identity  or  its  effect  on  the  mathematical  identity  of  the  seventh,   eighth  and  ninth  grade  students  whom  he  interviewed.     Spencer  (2009)  interviewed  32  African-­‐American  middle  school  students  and  their   mathematics  teachers  to  ascertain  the  mathematical  identities  of  the  students  and  the   effect  of  race  on  their  mathematical  identities.  Like  Martin  (2000),  Spencer  did  not   directly  question  students  about  race.  He  approached  race  indirectly,  particularly  for   those  students  who  saw  themselves  as  being  poor  in  mathematics  and  having  a   negative  mathematical  identity.  Spencer  did  however  question  the  teachers  directly  and   it  was  obvious  that  there  was  oppression  on  the  part  of  the  teachers  toward  their   students  because  of  their  African-­‐American  status.  The  teachers  were  careful  to  couch   their  attitudes  about  African-­‐American  students  in  terms  of  lack  of  parental   involvement  and  behavior  on  the  part  of  the  students.  The  teachers  went  so  far  as  to  see   the  students’  racial  identities  as  homogeneous,  whereas  they  praised  the  individuality   of  white  students.   Students  only  mentioned  race  when  they  remarked  about  incidence  when  they  were   doing  well  and  were  mocked  for  “acting  white”  by  other  African-­‐American  students   (Spencer,  2009).  Thus,  they  faced  oppression  not  only  at  the  hands  of  their  teachers  or   other  adults,  but  also  from  fellow  students  because  they  were  doing  well.  Within  these   narratives  we  know  that  the  retelling  captures  only  aspects  of  the  experience.  The  fact   that  we  can  only  partially  understand  these  experiences  shows  the  dangerous  in   essentializing  identity  of  any  kind  (Martin,  2009).     Ladson-­‐Billings’  (1995,  1999)  call  for  culturally  relevant  pedagogy  allowed  for  a   new  exploration  of  the  intersection  of  racial  and  mathematical  identities.  Her  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     31   explorations  differed  from  much  of  the  work  at  the  time.    It  did  not  focus  on  an  idea  of   deficit  in  black  students.  Rather  it  focused  on  historical  causes  of  discrimination  within   education  and,  in  particular,  mathematics.  She  continued  to  develop  the  idea  of   educational  disparities  and  referred  to  it  as  an  educational  deficit  rather  than  an   achievement  gap  (Ladson-­‐Billings,  2006).  This  focus  on  how  the  educational  system  has   failed  mathematics  students,  instead  of  the  students  being  failures,  boosted  the  study  of   mathematical  identity.  This  was  because  most  of  the  work  with  mathematical  identity   looked  at  how  students  were  able  to  be  successful  rather  than  on  concentrating  on  how   they  failed  (Martin  2000,  2004,  2009;  Stinson,  2004)     Martin  (2009)  went  further  with  discussions  of  race  and  mathematics  by   exploring  the  racial  achievement  gap  in  testing.  He  explained  that  the  issue  was  not  an   achievement  gap  based  on  race.  Martin  argued  that  to  be  based  on  race  there  must  be   an  implicit  understanding  that  race  is  biologically  based,  not  socially  constructed.  Thus,   the  idea  of  a  racial  achievement  gap  creates  a  hierarchy  of  racial  categories.  Martin   argued  against  this  racialization  of  mathematics  and  stressed  the  need  to  understand   the  stories  of  the  participants  being  discussed  (discourse-­‐based).    By  examining   individual  voices,  the  essentialization  of  a  single  experience  is  troubled  (Martin,  2000).     When  considered  in  conversation  with  Kumashiro’s    (2002)  understanding  of   anti-­‐oppressive  education,  one  can  begin  to  consider  the  implications  of  hearing  the   stories  of  real  people.  They  are  no  longer  the  ‘other’  to  be  pitied,  feared  or  exalted,   rather  they  become  a  part  of  the  ‘us.’    The  post-­‐structural  nature  of  these  ideas  reminds   us  that  all  knowledge  is  partial.  Therefore,  we  need  to  hear  multiple  stories  to  gain  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     32   fuller  understanding  of  what  has  been  experienced.  In  this  case,  the  experience  relates   to  mathematical  identity  intersected  with  racial  identity.   In  my  examination  of  the  literature,  I  sought  to  examine  what  other  work   considered  the  intersection  of  queer  identity  and  mathematical  identity.  While  my   search  was  unsuccessful,  there  is  relevant  research  that  explores  queer  and  gender   issues  in  a  range  of  subject  areas.  This  section  will  explore  such  work  within  the   literature  and  explore  how  it  informs  my  work.     Blackburn  and  Buckley  (2004)  surveyed  schools  to  determine  how  often  queer   characters  or  issues  are  raised  in  the  English  classroom.  Of  the  212  schools  surveyed,   only  18  used  any  materials  that  explored  queer  topics.  The  authors  spend  the  bulk  of   the  article  discussing  the  pros  and  cons  of  using  various  pieces  of  literature  to  inform   students  about  queer  topics.  This  study  does  not  inform  us  about  an  intersection  with   queer  identity,  but  it  does  provide  us  an  example  of  how  much  work  still  needs  to  be   done  in  the  area  of  queer  identity.  The  main  conclusion  from  the  work  of  Blackburn  and   Buckley  is  how  queer  issues  have  been  ignored  in  the  classroom.   Snyder  and  Broadway  (2004)  began  their  work  with  a  discussion  of  the   importance  of  a  positive  science  identity  for  those  with  a  queer  identity.  This  was  the   extent  of  their  discussion  of  any  intersection  of  the  two  identities.  They  proceeded  to   consider  how  queer  ideas  and  theories  fit  into,  but  were  left  out  of,  science  textbooks.   This  study,  while  advocating  for  a  positive  science  identity  for  those  with  a  queer   identity,  did  not  explain  what  that  intersection  looks  like.  From  this  study,  we  see  that   queer  students  benefit  from  a  positive  science  identity.  However,  we  do  not  have   specifics  of  what  the  intersection  of  science  identity  and  queer  identity  looked  like.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     Mendick  (2006)  explored  the  relationship  between  mathematics  and  

  33  

masculinity  and,  in  the  process,  called  upon  queer  theory.  She  argued  that  mathematics   education  in  English  speaking  countries  was  constructed  in  a  binary  fashion  that   favored  masculinity  and  absolutism.  Mendick  spoke  of  several  binaries  in  regard  to   mathematics,  some  of  which  are  masculine  or  feminine;  hard  or  soft;  absolute  or   changing;  and  abstract  or  concrete.  Within  these  binaries,  the  former  is  what  she   argued  was  the  normalized  mathematical  understanding  and  the  latter  was  the  non-­‐ mathematical  other.  To  disrupt  these  binaries  and  allow  students  with  non-­‐masculine   identities  the  ability  to  approach  mathematics  in  a  way  that  did  not  require  them  to   reconstruct  their  identities,  she  called  for  applying  queer  theory  to  queer  mathematics.   Mendick  used  queer  as  a  verb  not  a  noun,  and  this  was  meant  to  disrupt  the  binary  of   masculine/feminine  that  separated  those  who  did  math  and  those  who  did  not   (Mendick,  2006).     Mendick’s  work  applies  to  what  I  will  be  exploring  in  two  ways.  First,  she  saw   mathematics  and  mathematical  identity  as  being  discourse-­‐based.  She  used   mathematical  identity  in  a  limited  way.  While  she  sought  to  apply  queer  theory  to   disrupt  the  binary,  she  did  not  discuss  queer  as  an  identity.  Rather  she  used  it  as  a  verb   that  allowed  her  to  act  on  the  binary.   Identity  and  Educational  Disparities    

The  construct  of  identity  has  been  used  to  study  achievement  and  educational  

disparities.  Mallett,  Mello,  Wagner,  Worrell,  Burrow,  and  Andretta  (2011)  discussed   two  separate  studies  that  they  had  conducted.  They  examined  racial  identity  and   ‘belonging,’  the  feeling  that  one  belongs  in  an  academic  setting.  They  correlated  these  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     34   studies  to  planned  achievement  and  graduation  rates.    While  white  students  saw  a   positive  correlation  between  belonging,  racial  identity  and  future  plans,  students  of   color  with  a  strong  racial  identity  had  low  belonging  and  low  achievement  rates.      

Black  et  al.  (2010)  found  a  connection  between  a  “leading  identity”  and  

aspirations  for  further  achievement  in  career  and  higher  education.  Leading  identity  is   the  idea  that  there  is  one  identity  that  puts  in  focus,  the  rest  of  one’s  social  identities.   Black  et  al.  explored  the  leading  identities  in  the  context  of  mathematics  in  post-­‐ secondary  education.  The  researchers  discussed  mathematical  identity  intersected  with   gender  identity  through  the  focus  of  a  leading  identity.    They  discuss  Mary,  who  did  an   engineering  project  in  secondary  school  that  led  to  a  leading  identity  of  being  an   engineer.  As  a  result,  Mary  became  interested  in  mathematics  and  changed  her   trajectory  going  into  college.  In  this  instance  Mary’s  leading  identity,  ‘engineering   identity,’  drove  her  to  pursue  and  achieve  within  higher-­‐level  mathematics.  From  the   development  of  the  leading  identities  we  saw  a  way  in  which  one  identity  can  affect   another  identity.      

Cohen  and  Garcia  (2008)  discussed  their  findings  that  stigma  and  stereotype  

threat  are  still  issues  that  affected  educational  disparities  for  racial  minorities  and   female  students.  While  stereotype  threat  was  not  a  new  idea,  Cohen  and  Garcia  found   that  it  was  the  interaction  of  various  identities  in  particular  situations  that  were  the   greatest  cause  for  concern.  The  situations  at  play  could  be  as  simple  as  having  a  “bad   day”  in  school  that  lead  to  a  feeling  of  isolation  and  a  lessening  of  a  feeling  of  belonging.   This  feeling  of  isolation  and  lack  of  belonging  was  found  to  perpetuate  educational  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     35   disparities.  This  was  particularly  true  for  African-­‐American  students  and  to  a  lesser   extent  for  female  students.     To  alleviate  feelings  of  isolation  and  the  lack  of  achievement,  Cohen  and  Garcia   designed  a  model  that  lead  to  two  points  of  intervention.  The  aim  of  these  interventions   was  to  reduce  the  student’s  tendency  to  interpret  experience  in  light  of  social  identity.   The  first  intervention,  designed  to  lessen  race-­‐based  doubts  about  learning,  focused  on   students  at  the  end  of  their  freshman  year.  For  the  intervention,  students  received  the   results  of  a  survey  given  to  upperclassmen.  The  survey  highlighted  how  all  freshmen   struggled  with  feelings  of  belonging  regardless  of  race,  and  how  those  feelings  dissipate   over  time  for  everyone.  The  researchers  found  that  there  was  a  lasting,  preventative   effect  against  stereotype  threat  for  African-­‐American  students  that  prevailed  even   through  the  junior  year  of  college.  The  second  intervention  increased  students’   psychological  resources  for  dealing  with  threat  through  the  process  of  self-­‐affirmations.   In  the  second  intervention,  7th  grade  students  completed  an  in-­‐class,  self-­‐affirmation   exercise.  These  students  saw  improvement  in  GPA,  a  common  measure  of  achievement,   which  persisted  over  time.  What  this  study  emphasized  was  that  while  aspects  of  social   identity  can  have  a  negative  effect  upon  achievement,  there  are  strategies  that   counteract  these  negative  effects.   Other  work  focused  on  mathematics  beliefs,  what  Martin  (2000)  referred  to  as   mathematical  identity,  and  their  effect  on  achievement  in  introductory  mathematics   courses  in  college.  Loustatel  (2009)  found  that  students  with  a  stronger  mathematical   identity  were  more  likely  to  have  earned  an  “A”  in  introductory  college  mathematics  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     36   courses.  While  this  may  not  be  surprising,  this  exploration  of  identity  and  achievement   showed  that  identity  has  been  explored  in  many  different  ways.    

Venzant  Chambers  and  McCready  (2011)  also  looked  at  racial  identity  and  

achievement.  They  combined  data  from  two  separate  studies  and  found  commonalities.   They  found  that  African-­‐American  students  felt  marginalized  and  performed  at  a  lower   level  when  they  had  multiple  stigmatizing  identities  (Venzant  Chambers  &  McCready,   2011).  The  multiple  stigmatizing  identities  were  African-­‐American  and  either  gay  or  in   a  lower  track  in  high  school.  What  is  interesting  is  that  students  who  were  African-­‐ American  and  gay,  or  queer  as  McCready  (2004)  has  referred  to  participants  in  other   works,  had  a  lower  performance  or  achievement  level  in  school.  While  this  work  did  not   speak  to  the  student’s  academic  identity,  or  mathematical  identity  more  specifically,  it   did  examine  queer  identity  and  achievement.  While  the  thrust  of  the  studies  were  that   students  needed  to  “make  space”  for  themselves,  that  is,  they  needed  to  find  a  way  to  fit   into  a  group,  the  secondary  finding  of  lower  achievement  was  significant.  This  work   linked  a  queer  identity  to  lower  achievement,  implying  that  there  may  be  educational   disparities  here  that  are  unexplored.   These  works  (Mallett  et  al.,  2011;  McClain,  2008)  all  share  findings  about   identity  being  related  to  educational  disparities.  Identity  is  examined  in  many  different   ways,  as  it  relates  to  race,  gender,  and  low  SES.  For  some  of  the  discussions,  we  see  how   the  effects  of  a  certain  identity  can  be  mitigated.  What  we  do  not  see  in  all  of  this  work   is  the  inclusion  of  queer  identity.    

Taken  together,  we  can  see  that  there  is  a  gap  in  the  literature  when  examining  

educational  disparities.  Identity  has  been  used  to  explore  educational  disparities  for  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   students  of  color,  women,  college  students,  lower  tracked  students,  and  low  SES  

  37  

students.  There  was  a  study  that  implied  that  there  might  be  a  gap  for  queer  students,   but  educational  disparities  are  not  the  main  focus  of  that  study.  Since  a  positive   academic,  or  more  specifically,  a  mathematical  identity  has  been  shown  to  have  a   positive  impact  on  achievement,  there  is  a  need  to  explore  the  intersection  of   mathematical  identity  and  queer  identity.                            

 

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Chapter  3:  Methodology    

  38  

In  this  chapter,  I  discussed  qualitative  research  and  how  my  research  question  

fit  within  this  paradigm.  An  argument  was  made  for  why  this  research  was   phenomenological  in  nature.  Phenomenology  is  explained  in  terms  of  its  history.  While  I   explore  some  of  the  different  types  of  phenomenology,  I  focused  on  hermeneutic   phenomenological  methods.   Qualitative  Research:  Phenomenology     Qualitative  research  in  education  grew  out  of  dissatisfaction  with  quantitative   methods  that  many  researchers  felt  were  contrived  (Creswell,  1998).  These  researchers   found  that  quantitative  methods  placed  the  participant  into  an  unnatural  setting,   thereby  focusing  attention  upon  the  researcher  and  their  approach,  rather  than  on  the   experience  of  the  participant  (Creswell,  1998).  Whereas  quantitative  and  qualitative   research  were  once  seen  as  opposing  views,  the  lines  have  blurred  over  the  decades   and  they  are  now  considered  on  a  continuum  (Creswell,  1998).  While  there  are  various   other  types  of  qualitative  research,  such  as  ethnography,  case  study,  narrative,  and   critical  research,  I  used  phenomenology  as  it  focused  on  the  lived  experience  of  the   participants  as  well  as  the  researcher’s  experience  with  the  phenomena  being  studied.   Phenomenology  has  existed  as  a  research  method  for  a  relatively  long  time.  It   was  a  philosophy  that  was  first  proposed  by  Husserl  in  the  early  twentieth  century   (Smith,  Flowers,  &  Larkin,  2009).  Husserl  saw  phenomenology  as  a  philosophy  that   worked  to  uncover  the  reality  of  one’s  experience  through  a  series  of  reductions.  In  this   case  the  reductions  were  imaginings  about  what  the  universal  reality  of  a  situation  was   (Husserl,  1927  in  Smith,  Flowers,  &  Larkin,  2009).  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Heidegger  began  as  a  student  of  Husserl  but  shifted  his  understanding  of  

  39  

phenomenology  away  from  reduction  and  into  hermeneutics  (Heidegger,  1949).  This   change  signalled  a  philosophical  shift  in  how  Heidegger  understood  the  finding  of   meaning  within  phenomenology  (Heideggar,  1982).  Instead  of    relying  on  imaginary   reductionism,  Heideggar  made  a  move  toward  interpretism  and  the  understanding  of  a   universal.  He  postulated  that  the  researcher  can  work  to  interpret  the  experience  of  the   particiapants.  According  to  Heideggar  this  can  be  accomplished  through  the  finding  of   horizons,  or  themes,  that  the  researcher  identifies  in  the  stories  told  by  participants   (Smith,  Flowers,  &  Larkin,  2009).     Phenomenology,  in  its  most  basic  form,  considers  a  phenomenon,  a  thing  or  state   of  being  as  it  appears  (Heidegger,  The  Basic  Problems  of  Phenomenology,  1982),  and   seeks  to  describe  the  essence,  or  universality  (Van  Manen,  1990)  of  that  phenomenon   (Moustakas,  1994).  The  phenomenological  essence  is  not  an  essentialization,  but  rather   the  character  that  seeks  to  describe  the  structure  of  the  lived  experience  that  is  the   phenomenon  (Van  Manen,  1990).  Put  another  way,  phenomenology  looks  at  the  lived   experience  of  a  bracketed  idea  and  takes  the  bracketed  idea  and  explores  the  essence  of   that  idea  (Moustakas,  1994).       Bracketing  an  idea  is  a  process  that  decontextualizes  an  experience.  Bracketing   is  accomplished  by  first  considering  the  researcher’s  personal  experience  with  the   phenomenon.  This  is  then  followed  by  the  collection  of  stories  that  have  not  been   reflected  on  by  the  participants  (Van  Manen,  1990).  Within  phenomenology,  a   bracketed  idea  may  take  the  place  of  the  research  question  (Moustakas,  1994).  The   bracketed  idea  for  this  study  is  the  intersection  of  queer  identity  and  mathematical  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     40   identity.  This  study  sought  to  discover  the  essence  of  the  expression  a  queer  identity   and  how  this  interacts  with  the  participants’  mathematical  identity.    

Phenomenology  relies  on  a  method  in  which  the  researcher  uses  epoche  to  

explore  the  data  (Moustakas,  1994).    Epoche  is  a  state  of  having  one’s  mind  clear  of   judgment  and  preconceived  ideas  of  meaning  that  must  be  maintained  in  order  to   conduct  phenomenological  research.  Epoche  is  achieved  through  the  process  of   bracketing;  this  is  not  the  same  bracketing  process  described  previously.  This  process,   however,  is  related  to  the  bracketed  idea  that  may  form  the  question  being  explored.  In   this  aspect  of  bracketing,  the  researcher  explores,  generally  through  writing,  his  own   understanding  and  knowledge  about  the  phenomenon.  Epoche  requires  the  researcher   to  first  bracket  the  researcher’s  own  knowledge  of  the  phenomenon,  setting  aside  any   preconceived  notions  and  judgment  and  thus  decontextualizing  the  experience.    This  is   done  through  self-­‐reflection  on  the  phenomenon.  Epoche  then  requires  the  researcher   to  examine  the  stories  collected  in  order  to  discover  the  essence  of  the  lived   experiences  of  the  participants  (Creswell,  1998).   Within  the  realm  of  educational  research,  one  of  Heidegger’s  Hermeneutics   methodologies  is  usually  applied  (Smith,  Flowers,  &  Larkin,  2009).  Hermeneutics   methodologies  rely  on  interpretation  as  a  way  to  understand  both  the  universality  and   the  differences  within  the  lived  experience.  Of  the  Hermeneutics  approaches,  the  most   appropriate  research  design  was  Moustakas’    (1994)  modification  of  the  Stevick-­‐ Colaizzi-­‐Keen  method.  I  chose  this  method,  as  it  was  appropriate  when  the  researcher   not  only  has  an  interest  in  the  research  question,  but  also  has  first-­‐hand  knowledge  of  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     41   the  research  question  or  bracketed  idea  (Moustakas,  1994).  The  steps  to  this  type  of   phenomenology  are:   1. Using  a  phenomenological  approach,  obtain  a  full  description  of  your  own   experience  of  the  phenomenon.   2. From  the  verbatim  transcript  of  your  experience  complete  the  following  steps:   a. Consider  each  statement  with  respect  to  significance  for  description  of   the  experience.   b. Record  all  relevant  statements.   c. List  each  non-­‐repetitive,  non-­‐overlapping  statement.  These  are  the   invariant  horizons  or  meaning  units  of  the  experience.   d. Relate  and  cluster  the  invariant  meaning  units  into  themes.   e. Synthesize  the  invariant  meaning  units  and  themes  into  a  description  of   the  textures  of  the  experience.  Include  verbatim  examples.   f. Reflect  on  your  own  textural  description.  Through  imaginative  variation,   construct  a  description  of  the  structures  of  your  experience.   g. Construct  a  textural-­‐structural  description  of  the  meanings  and   essences  of  your  experience.   3. From  the  verbatim  transcript  of  the  experiences  of  each  of  the  other   participants  complete  the  above  steps,  a  through  g.   4. From  the  individual  textural-­‐structural  description  of  all  participants’   experiences,  construct  a  composite  textural-­‐structural  description  of  the   meanings  and  essences  of  the  experience,  integrating  all  individual  textural-­‐ structural  descriptions  into  a  universal  description  of  the  experiences   representing  the  group  as  a  whole.  (Moustakas,  1994,  p.  122)     What  this  means  is  that  I  first  described,  in  detail,  my  own  experience  reflected   in  my  having  a  queer  identity  and  a  mathematical  identity.  I  recorded  all  of  my  thoughts   and  relevant  experiences  based  on  the  interview  questions  and  prompts  that  are   described  below.  I  did  this  while  I  described  my  personal  experiences  as  a  way  to  enter   a  state  of  epoche.  This  allowed  me  to  gain  insight  into  the  essence  of  the  intersection  of   queer  identity  and  mathematical  identity,  as  well  as  to  understand  my  own  feelings  and   biases.  At  this  point,  by  examining  my  own  place  in  the  research,  I  had  achieved  a  state   of  epoche.  Therefore,  I  was  able  to  consider,  yet  set  aside,  my  own  views  of  the   phenomenon.  I  was  also  able  to  understand  how  my  experiences  fit  into  the  bracketed   idea  or  the  research  question  (Smith,  Flowers,  &  Larkin,  2009).  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     42   Once  these  steps  were  considered  for  my  writing,  it  was  time  to  consider  the   participants.  An  aspect  of  phenomenology  that  could  be  considered  troubling  by  some   was  that  participants  should  be  as  homogeneous  as  possible  (Smith,  Flowers,  &  Larkin,   2009).  All  of  the  participants  are  homogenous  in  that  they  are  all  queer  in  one  respect   or  another.  The  participants  are  homogenous  in  age,  all  being  between  eighteen  and   twenty-­‐one  years  old.  Also,  the  participants  are  homogenous  in  that  they  were  all  in   college,  or  had  been  in  college  within  the  six  months  prior  to  the  study.  This  provides   the  homogeneity  needed  for  the  study.  McCready  (2004)  pointed  out  that  queer  theory   is  encompassing  of  various  racial/ethnic  groups  and  resists  essentialization;  however,   this  is  not  in  conflict  with  phenomenology’s  call  for  homogeneous  subjects.  To  alleviate   any  appearance  of  a  conflict,  participants  are  a  mix  of  individuals  who  identify  as  queer,   whether  they  consider  themselves  male,  female  or  transgendered;  or  lesbian,  gay  or   bisexual.  I  did  not  set  out  to  fulfill  all  of  the  various  ways  one  can  identify  as  queer,  but   rather  was  open  to  all  the  various  expressions  of  queerness  in  the  participants.  In  so   doing,  I  sought  the  essence  of  queerness  and  mathematical  identity  rather  than  an   aspect  of  queerness.     The  process  continued  with  the  participant  interviews.  These  interviews  were   conducted  using  the  same  questions  that  I  answered.  Verbatim  transcription  followed,   with  the  text  uploaded  into  the  software  program  “Nvivo”  for  analysis.    

 The  next  step  was  to  conduct  a  line-­‐by-­‐line  analysis  making  detailed  notes,  or  

noticings,  of  the  participant  interview  transcripts.  I  then  gathered  the  detailed  notes   into  a  single  file  (Smith,  Flowers,  &  Larkin,  2009).  These  notes  became  the  invariant   horizons,  or  meaning  units,  of  experience  of  the  phenomenon  (Moustakas,  1994).  A  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     43   meaning  unit  of  experience  is  the  basic  unit  of  the  unchanging  essence  of  the  experience   (Smith,  Flowers,  &  Larkin,  2009).  These  meaning  units  were  sorted  into  themes  (Van   Manen,  1990).  The  invariant,  unchanging  meaning  units  and  themes  were  then   synthesized  into  a  description  of  the  experience  of  the  expression  of  one’s  queer   identity  and  mathematical  identity.     Following  this  process,  I  then  used  interpretive  variation,  often  described  as  a   mental  gymnastics  (Moustakas,  1994),  where  all  possibilities  are  considered  for  the   “why”  that  the  phenomenon  existed  the  way  it  did.  Interpretive  variation  is  sometimes   described  as  turning  ideas  forward  and  backward  (Moustakas,  1994).  It  was  the  second   time  in  the  process  where  detailed  notes  were  written  and  in  so  doing  the  researcher   became  one  with  the  experiences  of  the  participant.    The  process  was  described  as   textural  because  it  is  experiential.  ”…Texture  must  be  experienced;  rough  and  smooth,   rigid  and  flexible,  angry  and  calm”  (Moustakas,  1994,  p.  139).  I  then  searched  for  the   invariant  structure  or  the  “central  underlying  meaning  of  the  experience  and   emphasized  the  intentionality  of  consciousness  where  experiences  contain  both  the   outward  appearance  and  inward  consciousness  based  on  memory,  image,  and  meaning”   (Creswell,  1998,  p.  52).     The  final  step  involved  looking  across  the  various  themes  from  the  individual   transcripts  and  finding  commonality  in  them  (Smith,  Flowers,  &  Larkin,  2009).  These   common  themes  were  collected  together  and  along  with  verbatim  quotes  from  the   transcripts  the  findings  for  the  study  emerged.      

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Rationale  for  Selecting  a  Qualitative  Design    

  44  

The  research  question,  or  bracketed  idea,  for  this  study,  how  is  a  queer  identity  

and  one’s  mathematical  identity  expressed  at  the  same  time  for  queer  students,  asks  about   the  quality  of  an  experience  of  the  participants.  This  type  of  question  is  a  qualitative   question,  as  it  asked  about  the  “why”  or  “how”  of  something  (Creswell,  1998).  Because  I   was  exploring  the  “life  worlds”  of  the  participants,  and  seeking  the  meaning  of  that  life   world  experience  (Creswell,  1998;  Van  Manen,  1990),  a  phenomenological   methodology  was  chosen.     Exemplar  Studies  of  Phenomenology  and  Identity   Phenomenology  has  been  used  to  study  identity  in  multiple  studies  (Breshears,   2011;  Goodnough,  2011;  Singh,  Hays,  &  Watson,  2011).    All  of  these  studies  looked  at   either  a  queer  identity  or  were  focused  on  education.  This  highlighted  the   appropriateness  of  phenomenology  for  a  study  that  looked  at  queer  identity  intersected   with  mathematical  identity.   Breshears  (2011)  used  one  of  the  frameworks  from  Moustakas  (1994)  to  study   the  experience  of  lesbian  parents  coming  out  to  their  children.  She  showed  the   appropriateness  of  using  phenomenology  to  study  a  topic  that  dealt  with  sexual   identity.  Her  published  study  was  just  one  part  of  a  larger  study  that  explored  the  lived   experiences  of  lesbians,  all  of  which  were  phenomenological  in  nature.   Breshears’  study  reported  on  the  conversations  between  parents  and  their  child   in  reference  to  the  family  and  family  structure.  While  she  finds  her  results  helpful,  she  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     45   recognizes  the  limitations  that  she  experienced,  as  there  was  little  diversity  within  the   participants  in  her  study.  I  rectified  this  situation  within  my  research  by  seeking  more   racial/ethnic  diversity  among  the  participants.   Goodnough  (2011)  used  phenomenology  to  study  the  experience  of  teachers’   identity  that  had  participated  in  action  research.  The  study  was  a  longitudinal,   phenomenological  study.  In  it,  the  author  interviewed  teachers  before,  after,  and  years   after  they  conducted  action  research  about  their  identities  as  teachers  and  how  action   research  affected  that  identity.  This  shows  the  appropriateness  of  using   phenomenology  while  studying  identity  in  an  educational  setting.     Singh,  Hays,  and  Watson  (2011)  used  phenomenology  to  explore  transgender   identity.  This  was  relevant  in  that  the  researchers  explored  identity  and  some  of  the   participants’  identities  as  queer,  showing  the  appropriateness  of  phenomenology  in   exploring  a  queer  identity.  Singh  identified  as  queer,  thus  pointing  to  the  importance   within  phenomenology  of  the  researcher  having  some  connection  to  the  research  area.   This  supports  the  contention  that  it  is  important  that  I,  as  the  researcher,  identify   myself  as  queer.  This  holds  with  phenomenology’s  contention  that  the  researcher   should  have  some  background  knowledge  of  the  phenomenon  being  studied   (Moustakas,  1994).       Role  of  the  Researcher      

The  researcher  plays  an  integral  role  in  phenomenological  research.  As  the  

researcher,  I  needed  to  bracket  my  understanding  of  the  experience  in  order  to  achieve   epoche,  thereby  increasing  the  validity  of  the  study  (Van  Manen,  1990).  To  bracket  my  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     46   experience  is  to  write  out  my  experience  with  the  phenomenon,  thereby  realizing  my   own  biases  and  points  of  view  (Vagle,  2009).  The  purpose  of  this  process,  epoche,  is  to   be  able  to  examine  the  data  with  a  fresh  eye  and  be  able  to  grasp  the  meanings  and  find   the  horizons  and  themes  within  the  data  (Creswell,  1998).    

My  own  experience  with  the  phenomenon  was  integral  to  understanding  the  

experiences  being  explored  (Van  Manen,  1990).  Further,  as  the  researcher  in  qualitative   research,  some  have  suggested  that  I  was  a  unit  of  analysis  along  with  the  participants   in  the  study  (Smith,  Flowers,  &  Larkin,  2009).  For  phenomenology,  this  is  the  point  of   bracketing:  to  at  once  become  part  of  the  research  and  yet  to  transcend  one’s  personal   experience  and  become  one  with  the  data  (Smith,  Flowers,  &  Larkin,  2009).   Within  Moustakas’  modification  of  Stevick-­‐Colaizzi-­‐Keen’s  method,  I  took  on  a   special  role  as  the  researcher.  This  method  works  particularly  well  for  me,  as  I  am  a   queer  man  with  a  strong  mathematical  identity.  I  have  intimate  knowledge  of  the   phenomenon  (the  intersection  of  queer  identity  and  mathematical  identity).  Therefore,   it  was  important  to  consider  my  own  experiences  in  order  to  separate  them  out  and  to   be  able  to  understand  how  I  interact  with,  and  was  a  part  of,  the  research  study.   As  stated  above,  I  identify  as  a  queer  man.  While  I  self-­‐identified  as  gay  in  high   school  and  in  my  early  college  career,  I  did  not  disclose  my  sexual  identity  to  anyone   close  to  me  (come  out)  until  my  sophomore  year  of  college.  Since  that  time  I  have  lived   as  an  openly  queer  man.   In  high  school  I  was  in  an  advanced  mathematics  track  and  completed   mathematics  courses  through  pre-­‐calculus.  During  both  high  school  and  my  early   college  career,  I  struggled  with  my  queer  identity  and  this  manifested  in  my  studies,  as  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     47   it  took  me  six  years  to  complete  my  first  degree.  That  degree  was  a  BA  in  mathematics   at  the  University  of  Minnesota.  All  during  that  time  my  mathematical  identity  was   relatively  strong.  After  several  years  of  working,  I  returned  to  school  to  earn  a  BS  in   mathematics,  allowing  me  to  teach  mathematics  in  Minnesota.     After  three  and  a  half  years  of  teaching  high  school  and  middle  school   mathematics,  I  decided  to  take  a  break  from  teaching.  This  break  was  caused  by  the   constant  harassment  and  oppression  by  administrators  based  on  my  queer  identity.  My   mathematical  identity  stayed  high  as  I  used  my  strong  background  in  mathematics  to   work  in  construction.  After  a  few  years  away  from  education,  I  wanted  to  be  back  in  the   classroom  and  returned  to  teaching.  While  teaching,  I  saw  that  queer  students  were   being  steered  away  from  higher-­‐level  mathematics  in  high  school  by  counselors  and   teachers.  This  compelled  me  to  return  to  graduate  school  because  I  wanted  to  explore   the  relationship  between  having  a  positive  queer  identity  and  ones  mathematical   identity.   I  identify  as  a  queer  man  and  as  an  activist.  My  decision  to  be  fully  out  and   identify  as  queer  is  political.  Thus,  I  am  able  to  be  empathetic  toward  others  who  are   activists  in  that  they  came  out  at  an  early  age  and  now  live  out  lives.  As  I  have  faced   oppression  and  harassment  as  an  openly  queer  man,  I  can  empathize  with  and   understand  what  it  means  to  be  oppressed  and  harassed.   In  addition  to  having  a  positive  queer  identity  I  also  possess  a  positive   mathematical  identity.  I  have  had  a  positive  mathematical  identity  all  of  my  life.   However,  my  experience  as  a  teacher  in  secondary  mathematical  education  has   equipped  me  to  understand  and  be  sympathetic  toward  those  with  a  negative  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     48   mathematical  identity.  Because  I  have  positive  queer  and  mathematical  identities,  I  am   in  the  position  to  be  able  to  conduct  this  phenomenological  research.  During  the   process  of  epoche,  I  examined  my  experiences  more  fully  in  order  to  uncover  any  biases   that  may  have  been  below  the  surface  of  my  conscious  self.   Finally,  in  the  interest  of  full  disclosure,  I  volunteered  once  a  week  during  the   school  year  at  the  research  site,  an  LGBTQ  youth  center.  During  my  volunteer  time,  I   worked  with  an  arts  group  and  tutor  mathematics.  I  participated  as  a  mentor  several   summers  ago,  working  with  a  youth  on  issues  related  to  completing  high  school  and   college  admission.  This  mentor  relationship  was  continued  to  the  time  of  the  study.   These  volunteer  efforts  have  allowed  me  to  gain  trust  at  the  youth  center,  without   which,  it  would  be  difficult  to  recruit  participants  from  the  site.  I  clarified  my   relationship  with  all  the  youth  by  fully  disclosing  the  difference  in  my  role  as  researcher   as  opposed  to  my  role  as  volunteer.     Site  of  the  Study   The  site  of  the  study  was  an  LGBTQ  youth  center  in  a  large  east  coast  city  of  the   United  States.  The  center  has  been  serving  youth  since  1993.  The  mission  of  the  center   is  to  “create  opportunities  for  Lesbian,  Gay,  Bisexual,  Transgender,  and  Questioning   (LGBTQ)  youth  to  develop  into  healthy,  independent,  civic-­‐minded  adults  within  a  safe   and  supportive  community,  and  promotes  the  acceptance  of  LGBTQ  youth  in  society  “   (Attic  website,  2011).   In  the  pursuit  of  helping  LGBTQ  youth  to  develop  into  adults,  the  center  offered   various  programs  Monday  through  Friday  afternoons  and  evenings  during  the  school   year  and  Monday  through  Thursday  during  the  summer.  The  center  was  open  any  day  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   that  the  local  school  district  was  in  session.    Programming  during  the  school  year  

  49  

consisted  of  two  sessions  per  day,  Monday  through  Thursday.  Each  session  was  one  and   a  half  hours  long  and  topics  range  from  homework  help,  to  art,  to  fashion,  and  to   exercise.  Topics  for  the  sessions  are  decided  by  the  youth  three  times  a  year.  Friday   afternoons  were  a  drop-­‐in  session  where  youth  met  to  socialize.     The  staff  at  the  center  consisted  of  nine,  full-­‐time  professionals:  an  executive   director,  executive  assistant,  HIV  prevention  coordinator,  director  of  development,  a   receptionist,  art  specialist,  two  life  skills  coordinators,  and  an  out-­‐of-­‐school-­‐time   programming  coordinator.  Several  social  work  interns  from  local  universities  and   volunteers  fill  in  where  needed  and  assisted  with  programming.    Eight  therapists   volunteered  their  services  to  assist  youth  who  required  confidential  counseling.   The  center  served  approximately  250  youths  during  the  school  year  on  a  drop-­‐in   basis.  The  number  of  youths  participating  in  a  particular  program  varied  from  session   to  session  and  week  to  week.  During  the  summer,  the  center  had  an  intensive,  six-­‐week   program  that  emphasized  job  skills  and  had  a  mentoring  component.  The  summer   program  served  35  youths.   Participant  Selection   There  were  six  participants.    This  number  was  chosen  as  it  is  considered  to  be   manageable  and  yet  large  enough  to  be  able  to  find  commonalities  across  themes   (Smith,  Flowers,  &  Larkin,  2009).  Participants  were  queer,  non-­‐heteronormative,   eighteen  to  twenty-­‐one  year  olds  who  were  either  having,  or  had  recently  had,  a   mathematics  class,  all  participated  at  the  youth  center.  Participants  were  of  various   racial/ethnic  backgrounds.    What  the  participants  had  in  common  was  that  they  were  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     50   all  non-­‐heteronormative.  While  phenomenology  suggests  groups  be  as  homogeneous  as   possible,  queer  theory  suggests  that  there  be  variation  in  terms  of  race/ethnicity.  Queer   theory  rejects  essentialization  and  normatization;  thus,  having  a  single  ethnic  group   representing  ‘queer’  would  have  been  problematic.   The  participants  were  chosen  from  the  LGBTQ  youth  center.  Purposive  sampling   was  used.  At  the  center,  the  executive  director  assisted  in  identifying  participants  that   would  fit  the  criteria  and  were  willing  to  share  their  experiences.  Criteria  for  the   subjects  were  that  they  be  eighteen  to  twenty-­‐one  years  of  age,  queer  identified,  and   either  in  a  mathematics  class  or  have  recently  completed  a  mathematics  class.   Data  Collection    

Interviewing  is  a  well-­‐known  methodology  and  Cockburn  (2004)  described  how  

the  method  is  often  employed  in  a  phenomenological  manner.  Phenomenological  data   collection  is  primarily  through  long  interviews  (Moustakas,  1994;  Smith,  Flowers,  &   Larkin,  2009).  Interviews  consist  of  open-­‐ended  questions  and  were  semi-­‐structured.   This  is  to  allow  the  participants  to  take  the  interviews  in  directions  that  the  researcher   may  not  anticipate.    The  participants  were  free  to  relate  fully  their  experiences  (Wilson   &  Washington,  2008)  being  queer  and  about  their  mathematical  experiences.   Participants  made  the  initial  contact  after  the  director  of  the  youth  center  had   approached  them.  Interviews  were  conducted  at  a  private  location  chosen  by  the   participant  where  they  felt  safe  and  secure.    This  was  to  protect  the  participants’  rights,   particularly  with  regard  to  anonymity  and  confidentiality.  I  explained  the  study  to  the   participants,  as  well  as  their  rights  as  participants  in  the  study.    Participants  were  given  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     51   a  copy  of  the  consent  form  and  I  addressed  all  questions  about  the  study.  Consent  was   sought  to  audio-­‐record  the  interviews.  All  participants  agreed  to  be  audio-­‐recorded.     Interviews  consisted  of  a  45-­‐minute  to  2  and  a  half  hour  interview.  Interviews   were  audio-­‐recorded  and  transcribed  with  recordings  preserving  the  anonymity  of  the   individuals;  pseudonyms  were  used.  Transcriptions  were  also  completed  in  such  a   manner  so  that  participants  anonymity  was  preserved;  participants’  names  were   changed  and  the  transcripts  were  kept  in  a  password  protected  computer  file  at  all   times.   Interview  Questions    

With  a  phenomenological  approach,  the  questions  for  an  interview  act  as  a  

guide.  Once  participants  begin  to  express  themselves,  the  questions  may  have  been   altered  to  make  them  more  informative  (Moustakas,  1994).  Two  guiding  questions  are   listed  below  in  bold.  These  are  the  main  questions.  The  others  acted  as  prompts,  as   needed,  to  illicit  more  information.   •

What  does  it  mean  to/for  you  to  be  queer?  Can  you  describe  this  for  me?  



How  did  you  hear  about  the  Center?    Why  did  you  decide  to  come  to  the  Center?     How  long  have  you  been  coming  to  the  Center?    What  do  you  like  most  about  the   Center?      



When  did  you  come  out?    Please  describe  your  coming  out  experience.  How  were   you  accepted  in  high  school/  college/  at  home/the  youth  Center?  



Did  coming  out  affect  your  direction  in  life?  In  what  ways?  



Did  you  come  out  while  you  were  in  high  school/college?  If  so  were  you  out  at   school?  If  so  tell  what  that  was  like.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   •

What  does  it  mean  for  you  to  be  a  student/learner?  



What  is  your  favorite  subject/  what  are  you  majoring  in?    



Tell  me  about  yourself  and  math.  



How  did  your  math  classes  in  high  school  affect  you  going  to/getting  into  

  52  

college?     •

Tell  me  about  your  experiences  with  math.  Do  you  enjoy  it,  use  it,  do  you  find  it   difficult  or  easy?  



Were  you  encouraged  to  take  higher-­‐level  mathematics?  



Tell  me  about  being  queer  in  the  math  classroom,  how  do  your  teachers  treat   you,  how  do  other  students  treat  you?  



Do  you  feel  like  you  belong  in  the  math  classroom?  



Do  you  feel  confident  to  perform/excel  at  math?  

Data  Analysis    

Analysis  in  the  phenomenological  study  began  with  my  examination  of  my  

position  and  place  within  the  research  and  then  moved  on  to  the  transcripts  of  the   participants’  interviews  (Smith,  Flowers,  &  Larkin,  2009).    Interviews  were  analyzed   one  by  one  and  once  all  six  of  the  interviews  had  been  analyzed,  cross  analysis  was   done  (Smith,  Flowers,  &  Larkin,  2009).  I  used  a  qualitative  research  program,  Nvivo,  to   assist  in  organizing  and  analyzing  the  data.    In  interpretive  phenomenology  the  analysis  process  begins  with  the  researcher   reviewing  the  bracketing  of  his  own  experience  (Van  Manen,  1990).  Bracketing  is  the  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     53   process  of  considering  one’s  own  ideas  about  queer  identity  and  mathematical  identity.     This  allowed  me  to  consider  my  own  biases  and  place  within  the  research.      

Once  I  had  achieved  epoche,  reading  and  rereading  of  the  transcripts  allowed  a  

general  picture  of  the  data  to  emerge  (Smith,  Flowers,  &  Larkin,  2009).  Notes  were   written  in  the  text  that  accompanied  this  reading  and  rereading.  These  notes  covered   any  strong  overall  feelings  about  the  transcripts  as  a  whole.    

Initial  noticings  then  took  place  (Smith,  Flowers,  &  Larkin,  2009;  Van  Manen,  

1990).  This  step  was  the  most  time  consuming  and  was  concerned  with  making  logical   meaning  of  the  work.  This  was  a  close  analysis,  which  helped  avoid  a  superficial   analysis  of  the  work.  Out  of  this  step,  a  detailed  set  of  notes  was  compiled.  This  was  the   point  at  which  it  was  important  to  consider  the  transcripts  in  a  phenomenological   manner.  This  means  that  I  was  working  to  interpret  and  describe  the  events  in  the   transcripts  in  a  way  that  shows  what  mattered  to  the  participants.  These  notes   consisted  of  descriptive  comments,  linguistic  comments,  conceptual  comments,  and   also  contain  decontextualized  comments.    

The  next  step  was  to  identify  emergent  themes,  or  horizons  (Smith,  Flowers,  &  

Larkin,  2009;  Moustakas,  1994;  Van  Manen,  1990).  These  themes  were  collected   together  from  the  noticings  in  the  last  step.      

Following  the  identification  of  emergent  themes,  I  looked  for  connections  across  

the  themes  (Smith,  Flowers,  &  Larkin,  2009).  Some  of  the  ways  that  these  connections   were  made  included:  abstraction  (looking  for  themes  that  were  alike  and  combining   them);  polarization  (looking  for  oppositional  themes);  and  function  (examining  the  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     54   function  of  the  themes  within  the  context  of  the  transcript  as  a  whole)  (Smith,  Flowers,   &  Larkin,  2009).      

At  this  point  I  moved  on  to  the  next  case  and  repeated  the  process.  This  

continued  until  all  of  the  transcripts  had  been  analyzed.  Then  cross-­‐analysis   commenced  (Smith,  Flowers,  &  Larkin  2009;  Van  Manen,  1990).  Cross-­‐analysis  is  the   process  of  identifying  themes  that  the  various  transcripts  had  in  common.  This  process   occurred  by  comparing  the  notes  and  themes  from  the  various  participants’  transcripts   and  finding  what  was  common  among  participants.     Reliability  and  Validity    

Reliability  within  a  phenomenological  study  is  dependent  on  selecting  

participants  who  can  speak  to  the  phenomenon  being  studied  (Wilson  &  Washington,   2008).  Choosing  participants  who  clearly  related  their  experiences  with  a  minimum  of   analysis  of  what  the  experience  meant  was  crucial  (Van  Manen,  1990).  Finding   participants  who  fit  the  research  criteria  and  who  had  experienced  the  phenomenon   being  explored  resulted  in  rich  stories  that  allowed  me  to  extract  a  thick  description  of   the  events  relayed,  thus  increasing  the  reliability  of  the  study.    

Validity  is  a  function  of  bracketing  (Vagle,  2009).  Bracketing  is  the  process  of  

self-­‐reflection  on  the  part  of  the  researcher  during  which  the  researcher  either  engages   in  a  self-­‐interview  process,  or  engages  in  reflective  writing.  This  is  done  in  order  to   understand  personal  bias  as  well  as  the  researcher’s  place  within  the  research  (Smith,   Flowers,  &  Larkin,  2009).    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Ethical  Considerations    

  55  

Participants  read  carefully  and  signed  a  consent  form  that  clearly  described  any  

risks  and  benefits  to  them.  Risks  for  this  research  were  low,  as  participants  were   recalling  experiences  from  their  lives.    They  may  have  experienced  some  discomfort  if   the  stories  were  difficult,  and  there  was  the  possibility  of  recalling  a  repressed  memory   of  abuse.  If  the  participant  had  appeared  to  have  any  difficultly  with  their  recalled   experience,  they  would  have  been  referred  for  counseling  at  the  youth  center  to  assist   them  in  dealing  with  these  difficult  memories.  Research  participants  were  allowed  to   withdraw  from  the  research  project  at  any  time  if  they  were  uncomfortable.    

To  protect  the  anonymity  of  the  participants,  pseudonyms  have  been  used  and  

unneeded  identifying  information  was  not  collected.  Further,  all  transcripts  were  kept   in  a  password  protected  file  and  recordings  were  destroyed  after  transcription  and   analysis.     Epoche    

Within  phenomenological  research  the  researcher  has  a  unique  role  to  play.  He  

must  find  a  way  to  clear  his  mind  and  regulate  his  biases  and  preconceived  ideas  about   the  phenomenon  being  explored.  At  the  same  time  he  should  have  first  hand  knowledge   of  the  phenomenon  being  studied  (Smith,  Flowers,  &  Larkin,  2009).    

The  researcher  “interviewed”  himself  using  the  same  questions  that  were  asked  

of  the  participants  and  a  transcript  of  this  interview  was  made.  The  researcher  then   read  across  the  transcript  and  identified  themes  from  his  own  experiences.  He  used   these  themes  to  identify  his  own  biases  and  to  understand  his  own  experiences  and   how  they  influenced  his  interpretations  of  the  participant  narratives.  He  performed  this  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     56   self-­‐examination  before  the  rest  of  the  interviews  were  initiated  and  again  before  any   analysis  was  started.  This  process  was  performed  multiple  times  to  continue  to  clear   the  researchers  mind  of  preconceived  ideas  and  regulate  his  biases  (Moustakas,  1994).   Summary  of  Chapter    

The  research  question  In  what  manner  are  queer  identity  and  mathematical  

identity  expressed  simultaneously  for  individuals  self-­‐identified  as  LGBT,  was  a  qualitative   question.  This  was  because  the  question  was  asking  ‘how’  or  ‘why’  something  was   happening.  Further,  this  study  was  phenomenological,  as  it  has  examined  a   phenomenon,  the  intersection  of  queer  identity  and  mathematical  identity.      

Phenomenology  is  a  method  that  requires  the  researcher  to  be  an  active  

participant  in  the  research.  The  researcher  is  one  of  the  units  of  analysis  in   phenomenology;  that  is,  the  researcher  needs  to  consider  his  place  in  the  phenomenon   through  bracketing.  Through  bracketing,  the  researcher  increases  validity  by   considering  his  bias  and  position  in  relationship  to  the  phenomenon  under   consideration.      

Participants  were  recruited  from  an  LGBTQ  youth  center  located  in  a  large  east  

coast  city.  Participants  were  between  the  ages  of  eighteen  and  twenty-­‐one  and   therefore  they  could  speak  to  the  experience  of  recently  or  presently  being  in  the   mathematics  classroom.      

Data  collection  was  through  semi-­‐structured  interviews.  Interviewing  is  a  

common  practice  within  qualitative  research.  In  phenomenology  it  is  the  primary  data   collection  method.  An  outline  of  interview  questions  is  provided  in  the  body  of  the   work.  The  initial  analysis  consisted  of  note  taking  in  the  manuscript  in  order  to  locate  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     57   horizons.  These  horizons  were  then  sorted  into  themes.  Using  the  themes  as  a  structure,   and  making  generous  use  of  the  verbatim  words  of  the  participants,  the  findings  were   written.    Cross  analysis  of  the  data  followed.    

Validity  and  reliability  within  a  phenomenological  study  is  largely  a  function  of  

the  quality  of  the  bracketing  or  writings  by  the  researcher  about  his  experience  with  the   phenomenon  under  consideration.  Analysis  and  representation  of  participants’   experiences  and  reliability  depended  on  my  own  ability  to  write  and  reflect  on  any  bias   I  may  have  carried  into  the  study.    

 

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Chapter  4:  Findings  

  58  

  For  this  study,  six  participants  were  interviewed.  The  researcher  also  considered  the   questions  and  responded  to  them  to  understand  his  own  place  in  the  research  and  his   biases.  All  of  the  interviewees  identified  as  queer,  using  at  least  one  of  the  dimensions   of  the  definition  of  queer  outlined  in  chapter  one.    With  the  exception  of  the  researcher,   all  had  a  math  class  either  concurrent  with  the  study  or  within  the  six  months  prior  to   the  research.  This  last  criterion  was  selected  so  that  the  participants  could  speak  to   their  experience  with  mathematics  in  the  recent  past  or  present.  This  study  explored   the  question;  “In  what  manner  are  queer  identity  and  mathematical  identity  expressed   simultaneously  for  individuals  self-­‐identified  as  LGBT?”     In  the  initial  discussion,  each  of  the  participants  will  be  discussed  individually.    A   cross  analysis  of  all  six  participants  will  follow.  This  process  seeks  to  produce  a   universal  understanding  of  the  experience  of  possessing  a  queer  identity  and  a   mathematical  identity  simultaneously.  Pseudonyms  have  been  used  to  identify  the   participants.   This  study  took  place  at  a  lesbian,  gay,  bisexual,  transgender,  and  questioning   (LGBTQ)  youth  center  in  a  large  city  on  the  east  coast  of  the  United  States.  The  center   offered  support  groups,  counseling  services,  resumé  writing  assistance,  interview  skills   building,  and  recreational  opportunities  for  LGBTQ  youth  from  fourteen  to  twenty-­‐ three  years  of  age.  Many  of  the  youth  who  participated  in  the  activities  at  the  center   continued  to  use  the  services  of  the  center  until  they  reached  the  age  of  twenty-­‐four,  at   which  point  they  were  no  longer  eligible  to  participate.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Outline  of  Findings  

  59  

The  discussion  of  findings  begins  with  a  description  of  each  participant’s   background  and  demographic  information.  Next,  in  order,  coming  out,   family/community,  queer  identity,  the  role  of  the  LGBT  youth  center,  academic  identity,   and  mathematical  identity  of  each  participant  is  presented.  These  individual  results  are   followed  by  a  cross  analysis  of  all  the  participants.   Avis    

Avis  was  an  18-­‐year-­‐old,  African-­‐American  male,  who  identified  as  bisexual.  He  

attended  a  mid-­‐sized,  east  coast  university  and  majored  in  pre-­‐med  and  mathematics.   He  was  tall  and  amiable.  He  hoped  to  one  day  be  an  infectious  disease  doctor  and  serve   the  “gay  community.”  His  parents  and  guardians  raised  him.  The  terms  “parents  and   guardians”  were  used  here  because  Avis’  aunt  and  grandmother  had  been  his  primary   guardians.  At  the  same  time,  however,  he  had  frequent  contact  with  his  mother.  His   father  was  in  prison  and  had  been  incarcerated  for  large  periods  of  time  during  Avis’   childhood.    

Avis  began  to  “come  out”  early  in  his  life.  Coming  out  is  the  process  by  which  

LGBT  people  tell  others  about  their  sexual  orientation  or  their  gender  identity.  It  can  be   a  quick  process,  or  it  may  take  years  to  complete.  For  Avis,  the  process  began  when  he   was  twelve  years  old.  The  first  person  he  came  out  to  was  his  older  sister.  As  he   described  it:   She  was  actually,  she  was  overjoyed.  She  was  like  “Yes!  Yes!”  I  still  remember   that  to  this  day.  Oh  my  god,  but,  um,  it  was  nice.  It  was  like  I  had  a  weight   released  from  me,  as  my  family  is  very  anti-­‐gay,  bisexual,  pretty  much  everything  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     60   except  straight  for  a  number  of  reasons.  So  it  was  nice  to  know  that  at  least  some   of  my  family  would  support  me,  even  if  I  knew  that  most  of  them  wouldn’t.     For  Avis,  there  was  support  early  in  his  coming  out  process  from  his  older  sister.  This   support  was  important  to  him,  as  he  feared  that  the  rest  of  his  family  would  not  be   supportive  of  his  emerging  queer  identity.  He  had  yet  to  come  out  to  his  parents  and   guardians,  about  whom  he  stated:   My  parents  have  made  it  quite  clear  that  that  is  not  a  lifestyle  that  they  would   endorse,  so  to  speak.  It’s  not  something  they  would  approve  of  and  so  I’ve   thought  it  best  at  this  time  to  not  tell  them.   Avis  described  a  difficult  situation  in  which  to  find  oneself:  his  parents  had  expressed   disfavor  with  the  idea  of  possessing  a  queer  identity.  Based  on  this  information  he   decided  that  it  was  best  not  to  come  out  to  them  by  the  time  of  the  interview.  Avis  had  a   fear  that  his  parents  and  guardians  would  not  accept  him  even  though  he  played  an   integral  part  in  their  lives,  particularly  his  mother’s  life:   And  I  think  she’d  have  a  lot  of  difficult  (sic)  with  dealing  with  this  [being   bisexual]  and  I  still,  but  she  still  relies  on  me  heavily.  And  it  would  be  harder  for   me  to  communicate  with  her,  for  me  to  help  her  with  the  bills,  to  help  her  with   the  paperwork,  if  she  wasn’t  comfortable  around  me.    

Avis  was  concerned  about  the  discomfort  of  his  mother.  He  feared  rejection  if  he  

was  honest  about  his  queer  identity.  Part  of  his  fear  stemmed  from  the  help  that  he   perceived  his  mother  needed.  He  also  felt  that  it  would  be  more  difficult  for  him  to   interact  with  his  mother.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     When  asked  if  he  was  out  in  high  school,  Avis  replied:  

  61  

…those  close  to  me,  they  all  knew.  Everyone  close  to  me  knew.  Um,  who  all?   Actually,  no,  just  about  the  whole  high  school  knew.  It’s  not  that  I  so  much  told   everyone,  as  much  as  it  is  I  told  one  person  and  it  managed  to  have  spread  like   wildfire.   Although  Avis  had  only  told  a  few  people  about  his  queer  identity  in  high  school,  the   knowledge  of  his  sexual  orientation  was  disseminated  throughout  the  school  via  the   grapevine.  Despite  the  fact  that,  for  the  most  part,  Avis  kept  the  information  to  himself,   those  close  to  him  did  not  keep  the  information  to  themselves.      

When  asked  about  how  he  was  accepted  in  high  school  once  people  knew  of  his  

queer  identity,  Avis  replied:   By  and  large  I  felt  very  accepted  at  my  high  school.  Um,  it  was  very  comfortable   atmosphere.  At  times  I  miss  it  really.  But,  um,  I  felt  very  accepted  at  my  high   school  with  a  few  small  exceptions.  That  would  be  primarily,  um,  there  were  a   group  of  boys  that  didn’t  like  me  for  that  [being  bisexual]  and,  in  all  honesty,   they  didn’t  like  [me]  before  and  this  didn’t  make  relations  with  them  any  more   cordial.  I  tended  to  avoid  them  and,  yeah,  they  had  a  lot  of  animosity  towards  me.   I  didn’t  have  any  towards  them…   Avis  felt  accepted  at  high  school.  He  felt  so  accepted  that,  at  times,  he  wished  he  could   return  to  the  community  of  his  high  school.  He  spoke  of  being  part  of  a  community  and   how  good  this  made  him  feel.  He  also  had  teachers  who  helped  him.  Avis  said:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     62   His  name  was  Mr.  F,  he  himself  is  gay.  He  was  a  comfort  to  me  and  sometimes   when  I  was  just  feeling  bad.  There  was  also  Ms.  C  who  I  was  very  close  to.  She   actually  called  me  the  closest…  she  said  I  was  her  favorite  student  that  she  never   had.      These  teachers  both  acted  as  a  support  for  Avis’  queer  identity.  However,  this   acceptance  was  not  universal.  The  lack  of  acceptance  by  one  group  of  boys  was  not   described  as  mere  dislike  or  discomfort,  but  as  animosity.  These  boys  made  him  feel   that  he  had  to  avoid  situations  so  as  not  to  encounter  them  due  to  the  nature  of  the   feelings  against  him.      

Being  out  at  the  university  was  somewhat  different  than  being  out  at  high  school  

for  Avis.  When  asked  if  he  was  out  at  the  university,  Avis  replied:   Um,  some  of  them,  like  my  English  professor  knows,  my  biology  professor,  I’m   very  close  with  my  English  and  biology  professors.  Um,  who  else,  who  else?  Yes.   It’s  not  as  though  I  go  out  of  my  way  to  say  it,  but  if  it  comes  out  I  won’t  deny  it   or  anything.  And,  um,  let’s  see,  my  roommate  knows,  pretty  much  the  whole   dorm  knows.  They’re  cool  with  it,  it’s  kind  of  like,  I  suppose  you  could  say  it’s  an   open  secret,  where  about  everyone  knows  it.   Avis  was  willing  to  share  his  sexual  identity  with  others.  When  he  said,  “…I  suppose  you   could  say  it’s  an  open  secret…”  He  had  stated  that  he  is  willing  to  share  the  information   on  his  sexual  orientation  on  a  “need  to  know”  basis.  At  the  same  time,  he  did  not  try  to   hide  who  he  was  from  anyone  and  would  answer  the  question  if  asked.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     63     When  asked  to  describe  what  it  meant  to  have  a  bisexual  identity,  Avis  replied,   “Um,  I  have  a  physical  attraction  to  both  males  and  females.  Um,  I  wouldn’t  mind  being   in  a  relationship  with  either  gender.  I’ve  never  actually  thought  about  saying  this  out   loud  before.”  In  spite  of  his  being  out  in  high  school  and  at  the  university,  he  had  never   thought  about  what  it  felt  like  to  verbalize  his  queer  identity.  Further,  Avis  defined  his   identity  not  just  in  terms  of  attractions,  but  also  in  terms  of  relationships.      

When  asked  if  coming  out  had  changed  his  direction  in  life,  Avis  replied:   It  most  definitely  affected  my  directions  in  life.  In  particular,  I  really  wanted  to   make  sure  I  stayed  in  the  city  now…  I’ve  visited  some  rural  areas.  They’re   generally  not  as  accepting  of  people  of  alternative  sexuality,  pretty  much   everything  except  for  straight.  

It  was  Avis’  perception  that  possessing  a  queer  identity  would  be  more  accepted  in  an   urban  environment.  He  based  this  conclusion  on  his  personal  experience.      

Avis  described  his  introduction  to  the  youth  center  in  the  following  comment,  “I  

knew  some  friends  who  went  there  once  and  they  told  me  about  it  [the  youth  center]   and  I  worked  there  over  the  summer.”  In  contrast  to  his  experience  in  high  school  and   college,  at  the  LGBTQ  youth  center  Avis  found  a  place  where  he  could  express  himself   more  freely.  He  also  found  various  kinds  of  support.  He  described  the  center  as,  “I  went   there,  I  saw  it  was  a  very  comfortable,  very  open  atmosphere,  and  I  really  enjoyed  being   there.”  Of  his  activities  at  the  center,  he  said:   I  was  able  to  provide  some  small  income  for  myself.  Additionally,  the  counseling   services  there  have  been  great  and  they’ve  also  helped  me  with  other  things  such  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   as  finding  a  career,  applying  for  scholarships,  and  I’m  even  working  on  my  

  64  

resumé.  It’s  been  very  nice.    

In  addition  to  scholarships  and  a  work-­‐study  position  at  college,  Avis  used  the  

youth  center  to  help  support  himself  financially  through  the  center’s  jobs  program.    The   counseling  and  job  skills  training  aided  him  with  regard  to  his  future  career  goals.  The   aspects  of  the  youth  center  that  he  did  not  take  advantage  of  were  the  recreational  and   creative  activities  that  were  available,  though  he  never  told  us  why  he  did  not   participate  in  those  activities.      

In  both  his  formal  education  and  personal  life,  Avis  exhibited  a  strong  

mathematical  identity.  He  said  about  mathematics:   I  find  math  very  interesting.  I  like  the  way  it  can  describe  the  natural  world,  so  I   find  like  things  like  just  different  equations  or  parts  of  different  equations  very   interesting…  But,  um,  yes,  I  enjoy  math.  I  enjoy  doing  math.  I  like  the  way  you   can  present  relationships  about  things  in  a  clear  way  that  can  be  understood  by   anyone  with  enough  background.   For  Avis,  mathematics  was  a  way  to  describe  and  understand  the  world.  Also,  it  was   enjoyable  for  him  to  do  mathematics.  He  found  the  process  of  being  able  to   communicate  with  others  through  mathematics  to  be  useful.      

He  found  that  at  times  he  could  not  learn  from  his  instructors.  Avis  stated:   I  really  learned  you  sometimes  have  to  teach  yourself  math.  And  when  I  did  that,   that’s  when  I  really  started  appreciating  math  because,  I  mean,  if  I  saw   something  I  learned,  I  didn’t  have  to  be  taught,  I  could  learn  on  my  own.  And  I  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   could  learn  about  so  many  different  subjects,  it  was  wonderful.  

  65  

Avis  taught  himself  mathematics  when  the  need  arose.  He  found  that  when  he  taught   himself  mathematics  that  he  had  a  greater  appreciation  for  the  mathematics.  This  was   an  indication  of  the  strength  of  Avis’  academic  and  mathematical  identities.  This  is   because  the  ability  to  teach  himself  mathematics  increased  his  ability  to  obtain   mathematical  knowledge.      

Avis  accomplished  all  that  he  had  without  the  full  support  of  his  parents.  He  

explained,  “They  contend  to  this  day  that  by  taking  higher  level  courses,  by  challenging   myself,  I’m  going  to  get  burnt  out.  I  still  haven’t  yet.  I’m  still  enjoying  it.”  While  his   parents  and  guardians  feared  that  he  would  tire  of  learning,  Avis  demonstrated  a  great   capacity  for  obtaining  new  knowledge.  His  enjoyment  of  the  learning  process  is  also   made  clear  in  his  statements.      

When  asked  if  his  queer  identity  had  any  effect  in  the  mathematics  classroom  or  

if  the  mathematics  classroom  had  any  effect  on  his  queer  identity,  Avis  replied,  “It  was   kind  of  awkward  at  times  when  you’re  having  a  conversation  with  someone  and  then   you’re  thinking,  ‘you’re  really  hot.’”  In  Avis’  opinion,  his  bisexual  orientation  had   drawbacks  in  the  classroom.  He  had  some  discomfort  when  he  spoke  to  individuals  to   whom  he  was  attracted.  He  found  it  to  be  problematic  because  he  had  sexualized  his   classmates  in  the  mathematics  classroom.  His  sexual  desire  appeared  to  get  in  his  way.   He  went  on  to  explain:   They  had  certain  expectations  of  me  [of  a  male  who’s  attracted  to  males]  and   when  I  didn’t  meet  these  expectations  of  theirs,  pretty  much  stereotypes,  they   would  seem  almost  confused  and  upset  as  though,  somehow,  being  bisexual  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     66   completely  defined  who  I  was  as  a  human  being.  Um,  another  expectation  was   that  I’d  be  very  loud,  like,  even  whorish.  At  times,  they  had  this  preconceived   notion  that  as  I  was  bisexual,  [I  was]  just  some  whore,  this,  that  and  a  third.      He  spoke  of  himself  in  terms  of  someone  who  was  upset  at  being  sexualized  in  the   mathematics  classroom.  He  felt  that  people  stereotyped  him  as  promiscuous  because  he   was  bisexual.  Avis  was  disturbed  by  the  implications  of  that  stereotype.  We  saw  this  in   his  use  of  the  words  “whore”  and  “whorish.”  He  is  distressed  by  the  idea  of  being   negatively  stereotyped  because  of  his  queer  identity.  Avis  has  complicated  the  issue  by   complaining  about  being  sexualized,  while  he  himself  is  sexualizing  his  classmates.      

In  addition  to  feeling  sexualized  and  stereotyped,  Avis  perceived  that  there  were  

unrealistic  expectations  that  had  been  put  upon  him  by  classmates.  He  stated:   But,  uh,  there  was  a  part  of  me,  honestly  a  rather  large  part  me  that  wanted  to   react  very  negatively  to  that,  just  yell  and  scream  and  tell  them  “you’re  wrong.   You’re  wrong.  You’re  an  idiot,  you’re  wrong.”  But,  I  restrained  myself;  I  knew   that  wasn’t  going  to  [do]  anything  for  me.   The  negative  stereotypes  and  expectations  caused  Avis  to  want  to  express  his  anger  and   frustration  about  his  classmates’  behaviors  and  prejudices.  However,  he  held  back  and   did  not  express  his  anger  to  them.  He  restrained  himself  out  of  a  sense  that  he  had   nothing  to  gain.      

Avis  identified  as  bisexual  and  did  not  use  the  word  queer  to  identify  himself.  He  

began  the  coming  out  process  when  he  was  twelve  years  old.  His  older  sister  was  the   first  person  he  came  out  too,  and  she  was  overjoyed  by  the  idea  of  having  a  bisexual   brother.  The  rest  of  his  family  did  not  approve  of  non-­‐heteronormative  sexual  identities  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     67   and  so  he  had  not  come  out  to  them.  The  LGBTQ  youth  center  was  a  support  for  Avis  as   he  was  able  to  find  a  welcoming  community  there,  even  though  he  did  not  take   advantage  of  many  of  the  recreational  opportunities.      

Avis’  mathematical  identity  was  strong.  He  was  a  mathematics  major  at  the  

university  he  attended.    His  teachers  and  his  personal  ability  to  teach  himself   mathematics  supported  his  mathematical  identity.  Avis  was  bothered  by  what  he  saw  as   the  connection  between  his  queer  identity  and  the  mathematics  classroom.  This  was   that  he  sexualized  his  classmates  and  in  return  they  appeared  to  have  sexualized  him.   While  his  sexualizing  of  his  classmates  was  not  overly  problematic  for  him,  when  his   classmates’  sexualized  him,  he  was  very  bothered  by  the  behavior.   Gerald    

Gerald  was  a  21-­‐year-­‐old,  African-­‐American  male  who  identified  as  gay  or  queer.  

He  was  slight  in  stature  and  soft-­‐spoken.  He  was  in  his  senior  year  at  a  small  arts  college   in  a  large,  east  coast  city.  He  planned  to  graduate  with  a  degree  in  graphic  design.    

During  Gerald’s  interview  he  sometimes  used  the  terms  gay  and  queer  

interchangeably,  but  most  of  the  time  the  two  words  had  distinct  meanings.  When  he   described  his  sexuality,  he  used  the  term,  “gay  man.”  When  he  spoke  of  his  community,   he  used  the  term,  “queer,”  signaling  that  he  saw  the  community  as  something  more   inclusive  than  just  gay  men.      

Gerald  began  the  process  of  coming  out  when  he  was  sixteen  years  old.  One  of  

the  first  people  he  came  out  to  was  his  mother,  but  only  after  being  outed  by  his  aunt.   The  situation  arose  as  a  result  of  being  on  Facebook  and  being  “friends”  with  his  aunt.   Gerald  had  checked  in  his  profile  that  he  was  interested  in  men.  He  explained:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     68   And  I  forgot  that  I  was  friends  with  my  aunt  on  Facebook  and  my  aunt  saw  my   status  on  Facebook  -­‐-­‐  that  I  was  interested  in  men.  And,  I  don’t  know,  I  feel  like   she  saw  that  and  then  she  called  my  mom  and  she  said,  “Oh,  your  son’s  gay.  I   can’t  believe  this”  and  all  of  this  bible  religious  stuff  and  then  spurting  it  at  my   mom.  And  then  my  mom  came  to  me  and  asked  me,  but  I  told  her  a  lie  first.  I  told   her  no,  but  then  later  on  that  day  I  went  back  to  her  and  we  talked  about  it.  She   was  like,  “Oh,  it’s  a  phase,  you’re  going  to  get  over  it  soon,”  and  stuff  like  that.   You  know,  the  usual  disbelief.  But,  I  don’t  know,  I  feel  like  today  she’s  more…   supportive  than  she  was  when  I  first  came  out.  That  time  was  weird.      Gerald  was  in  a  situation  where  he  was  casually  being  open  about  his  sexual  identity.   He  was  clearly  out  in  some  regard  as  he  listed  on  his  Facebook  page  that  he  was   interested  in  men.  He  had  not,  however,  come  out  yet  to  any  members  of  his  family.   After  being  outed  by  his  aunt  and  initially  denying  it,  Gerald  felt  it  was  safe  to  come  out   to  his  mother.  Her  first  reaction,  however,  was  denial  and  disbelief.  She  later  changed   her  feelings  and  became  supportive  of  his  queer  identity.     Gerald  began  visiting  the  LGBTQ  youth  center  when  he  was  in  high  school.  At   first  he  was  reluctant  to  attend  the  center:   I  was  kind  of  skeptical  about  coming  at  first  because  I  heard  kind  of  some  weird   things  about  it,  like  kind  of  these  people  told  me  about  being  sexually  harassed   at  the  [center].  I  was  like,  “I  don’t  want  to  go  there.  I  don’t  want  to  be  sexually   harassed.”  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     69   Gerald  was  nervous  about  entering  an  unfamiliar  place.    He  had  received  erroneous   information  about  what  was  happening  there  and  about  what  he  could  expect.  As  it   turned  out,  the  youth  center  was  the  community  he  was  seeking.      

The  youth  center  itself  became  an  integral  aspect  of  Gerald’s  queer  identity.  The  

center  was  where  he  found  employment,  received  help  with  job  skills,  and  found   recreational  and  creative  outlets.  The  youth  center,  for  him,  was  an  expression  of   community.  Gerald  explained:   I  find  it  that  the  most  important  part  of  my  identity  is  being  part  of  a   community…  it’s  a  very  loving  community  and  it’s  very  accepting.  I  don’t  know…   I  feel  like  the  community  is  a  big  part  of  my  identity.     The  community  that  he  found  became  a  major  factor  in  his  queer  identity.  Gerald  found   love  and  support  for  who  he  was  within  the  LGBTQ  community,  particularly  the   community  that  was  the  youth  center.    

Gerald  attended  a  high  school  with  a  gay  straight  alliance  (GSA)  and  was  an  

active  member  of  the  club.  A  GSA  is  an  affinity  group  comprised  of  LGBTQ  people  and   supportive,  straight  people  (allies).  The  GSA  was  another  community  with  which  he   interacted,  and  one  that  helped  him  to  further  the  development  of  his  queer  identity.   While  the  community  he  experienced  at  the  GSA  was  important  to  him,  he  did  not   express  the  same,  strong  feelings  for  the  GSA  that  he  had  expressed  for  the  youth   center.    

Gerald  attended  an  arts  high  school  where  possessing  a  queer  identity  was  not  

problematic.  He  said  of  his  experience  in  high  school:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     70   I  mean,  it  was  pretty  normal.  I  didn’t  have  to  deal  with  any  kind  of  discrimination   or  bullying.  It  was…  I  mean,  honestly,  it  was  better  than  most  people,  sad  to  say.   But  I  had  a  good  experience  in  high  school  with  my  identity.   Gerald’s  experience  in  high  school  allowed  him  to  develop  his  queer  identity  in  a   meaningful,  positive  way.  He  did  not  have  to  deal  with  harassment  of  any  kind  and  this   made  the  experience  enjoyable.  Gerald  was  out  in  high  school  and  described  the   situation  as,  “I’m  pretty  sure  my  teachers  knew.  They  didn’t  care,  like  most  of  my   classmates.”    

Gerald  saw  a  strong  need  for  educational  attainment.  He  stated,  “I  feel  like  going  

to  school  and  passing  tests  and  stuff  and  graduating,  that’s  evidence  of  you  being   committed  and  it  shows  people  who  are  trying  to  hire  you  that  you’re  a  good  person.”   When  using  the  phrase  “you’re  a  good  person,”  he  was  referring  to  being  the  right   person  for  the  job,  a  good  potential  employee.  Gerald  felt  that  the  process  of  education   gave  him  the  tools  that  he  needed  in  order  to  gain  employment.  He  linked  doing  well  in   school  with  career  advancement.      

During  his  interview,  Gerald  seemed  to  tie  most  of  his  academic  identity  to  

formal  schooling.  He  spoke  about  how  his  friends  were  impressed  by  his  persistence  in   maintaining  a  college  career:   I  feel  like,  especially  with  a  lot  of  people  I  hang  out  with,  they  make  a  big  deal  out   of  me  going  to  school  and  stuff  -­‐-­‐  especially  my  friend,  Liza.  She  was  in  school,   but  I  guess,  she  took  a  year  off  and  she  never  went  back.  So  she’s  like,  “Oh  I  can’t   believe  you’re  still  in  school.  You’re  doing  such  a  good  job.”  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     71    This  type  of  support  and  positive  reinforcement  from  his  friends  strengthened  Gerald’s   academic  identity.        

Gerald  viewed  schooling  as  necessary  to  moving  ahead  in  life.  He  explained:   I  think  it’s  something  that  everyone  has  to  do,  so  I  don’t  feel  like  I  should  get…   well,  it’s  a  good  thing  to  get  praise  for  it,  but  I  don’t  think  it’s  necessary.  But  I  feel   like,  for  me  to  be  a  student,  it’s  very  important  for  what  I  want  to  do  later.  

During  the  interview  he  indicated  that  he  believed  in  the  universality  of  education.   Gerald  also  recognized  the  importance  of  his  own  education.  While  he  did  not  see   getting  praised  for  his  accomplishments  as  essential,  he  appreciated  it  nonetheless.  He   also  understood  that  there  was  a  use  for  his  education  -­‐-­‐  pursuing  his  career.        

Gerald’s  mathematical  identity  also  played  a  part  in  his  career  choice.  He  studied  

graphic  design  and  saw  mathematics  as  a  necessary  aspect  of  everything  he  did  career-­‐ wise.  As  he  said:   Well,  not  just  with  geometry,  but  there’s  a  whole  lot  of  measuring  and   mathematics  going  on.  With  graphic  design,  especially  if  you’re  using   Photoshop...  I  don’t  know,  measuring  and  geometry,  it  really  works  well  with  the   art  that  I’m  doing.   From  this  we  saw  how  Gerald’s  mathematical  identity  played  an  important  part  in  his   career  choice,  as  well  as  how  his  career  choice  supported  his  mathematical  identity   because  Gerald  saw  or  understood  the  usefulness  of  mathematics.        

In  keeping  with  his  mathematical  identity,  Gerald  found  most  types  of  

mathematics  approachable.  He  stated:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     72   I  enjoy  certain  subjects.  I’m  not  a  big  fan  of  Pre-­‐Calculus,  but,  I  mean,  Algebra   and  Pythagorean  theorem,  why  is  x2+b2  =52,  stuff  like  that,  I  guess,  it  was  pretty   enjoyable.  My  favorite  was  Geometry.  Pre-­‐Calculus…  I  think  my  ending  grade   was  a  C-­‐,  because  Pre-­‐Calculus  is  very  difficult.  And  also  it  was  first  period,  so  I   was  kind  of  late  a  lot  of  the  time.   We  saw  that  he  enjoyed  algebra  and  geometry,  but  struggled  with  Pre-­‐Calculus.  Gerald   was  able  to  obtain  mathematical  knowledge;  he  found  it  enjoyable  and  useful.    He   explained,  “Yeah.  Well,  not  just  with  geometry,  but  there’s  a  whole  lot  of  measuring  and   mathematics  going  on.  With  graphic  design,  especially  if  you’re  using  Photoshop,  which   I  use  a  lot  of  Photoshop…”  Gerald  saw  the  utility  of  mathematics  in  his  chosen  field  of   graphic  design  and  found  practical  applications  when  using  computer  programs  such  as   Photoshop.    

More  importantly,  however,  was  the  fact  that  he  attributed  most  of  his  positive  

feelings  about  mathematics  to  a  favorite  teacher  in  high  school.  As  Gerald  said:   I’ve  had  a  pretty  good  math  career  throughout  my  life,  but  in  high  school  I  really   had  a  good  math  teacher.  His  name  was  Mr.  K  and  he  really  helped  me  a  lot.   Especially  if  I  was  having  problems  with  some…  say  if  I  got  a  C  on  my  test  I   would  go  to  him  and  he’d  go,  “Well,  you  got  this  wrong  because  blah  blah  blah.”   But  he  would  help  and  he  would  guide  me  through,  and  he  even  gave  me  at  home   assignments  that  was  outside…  because  he  was  a  different,  he  wasn’t  my   primary  math  teacher…  Mr.  K  was  an  open,  gay  male  [teacher]  in  high  school…   he  was  also  the  GSA  facilitator.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Gerald  expressed  an  understanding  of  his  own  abilities  in  mathematics.      

  73  

Gerald  also  explained  how  important  a  role  his  tutor  and  mentor,  Mr.  K,  an  

openly  gay  man,  played  in  his  mathematical  development.  Not  only  was  Mr.  K   instrumental  in  Gerald’s  mathematics  education,  he  was  a  very  visible  role  model  as   GSA  advisor.  Mr.  K  had  an  impact  on  the  intersection  of  Gerald’s  queer  and   mathematical  identities.  This  was  because  Mr.  K,  as  an  openly  gay  man  and  a   mathematics  teacher,  was  able  to  support  Gerald  both  in  the  areas  of  his  queer  identity   and  his  mathematical  identity.  The  fact  that  Mr.  K  went  out  of  his  way  to  support   Gerald’s  mathematical  identity  was  described  when  Gerald  spoke  of  Mr.  K  going  over   tests  from  other  classes.  Mr.  K  also  provided  extra  homework  for  subjects  he  may  not   have  been  teaching  at  the  time.      

Mr.  K  helped  Gerald  develop  his  mathematical  identity  both  in  terms  of  the  

performative  and  perceptual  aspects.  Performatively,  Gerald  was  able,  with  the  help  of   Mr.  K,  to  see  the  usefulness  of  mathematics  as  well  as  increase  his  ability  to  obtain   mathematical  knowledge.  Perceptually,  the  assistance  that  Mr.  K  provided  increased   Gerald’s  belief  in  his  mathematical  abilities.    

In  addition,  Gerald  shared  a  sense  of  community  with  Mr.  K.  In  this  case,  

community  was  defined  as  having  shared  interests.  Their  community  was  centered   around  their  joint  participation  in  the  GSA,  their  interaction  in  the  process  of  Gerald   gaining  mathematical  knowledge  from  Mr.  K,  and  their  shared  queer  identities  as  gay   men.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     74     Gerald  identified  both  as  gay  and  as  queer.  When  he  identified  as  queer  he  spoke   about  the  community  he  had  found.  Gerald  found  community  in  several  different  places,   the  youth  center,  the  GSA,  and  with  Mr.  K.  In  these  places  of  community  he  found   support  for  his  queer  and  his  mathematical  identities.  Mr.  K  played  more  of  a  role  than   just  as  someone  with  whom  Gerald  found  a  sense  of  community  however.  In  Mr.  K   Gerald  found  a  mentor,  someone  who  was  gay  identified  that  was  also  an  adult,  and   giving.  Mr.  K  was  able  to  support  Gerald  in  multiple  ways,  with  his  queer  identity  as   well  as  with  his  mathematical  identity.   Kevin    

Kevin  was  a  21-­‐year-­‐old,  Caribbean-­‐born,  black  male  who  identified  as  queer.  He  

was  tall  and  athletic.  He  attended  a  mid-­‐sized  college  in  a  large  east  coast  city.    He  was  a   theater  major  with  an  emphasis  in  dance.     With  regard  to  his  queer  identity  he  stated,  “So,  being  queer,  um,  in  regards  of   who  I  am  means  I’m  not  really  trying  to  be  a  man  or  trying  to  be  a  woman,  just  trying  to   be  comfortable.”  Being  queer  for  Kevin  was  not  a  shorthand  way  to  say  he  was  LGBT,   but  rather  was  something  outside  of  the  binary;  he  saw  being  queer  as  another  identity.   Kevin  saw  the  binary  as  being  either  a  man  or  a  woman.  By  stepping  outside  of  the   binary  Kevin  was  recognizing  for  himself  how  his  own,  queer  identity  transcended   heteronormativity.     Kevin  separated  his  queer  identity  from  his  sexuality,  which  he  described  as  he,   “…dates  gay  men  and  trans-­‐women.”  He  explained  that,  “Some  would  describe  this  as   bisexual  except  that  not  everyone  identifies  as  a  man  or  a  woman.”  In  this  assessment,   he  was  recognizing  the  continuum  that  is  sex  and  gender.  This  was  an  indication  of  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     75   sophisticated  understanding  of  not  just  sex  and  gender,  but  also  of  the  term,  “queer”   (Wilchins,  1997).    

Kevin  had  a  nuanced  understanding  of  what  it  meant  to  be  queer.  He  said,  “So,  a  

lot  of  queer  people  that  I  know,  they’re  in  like  polyamorous  relationships  or  they’re,   like,  adopting  kids,  or  foster  parenting  kids,  or  they’re  like  in  older-­‐younger   relationships.”  In  Kevin’s  view,  being  queer  was  about  more  than  just  with  whom  one   has  sex  or  to  whom  one  is  attracted;  he  saw  it  as  being  about  relationship.      

Early  in  his  teen  years,  Kevin  thought  he  might  be  asexual,  as  he  had  no  real  

interest  in  either  males  or  females.  One  day,  when  he  was  15,  a  young  man  asked  him   out  and,  as  he  stated:   But  then  this  guy  asked  me  out,  so,  you  know,  I  was  like  “sure,  what  the  heck?”   So  I  went  out,  and  then,  you  know,  we  had  a  really  good  time.  We  were  walking   around  downtown,  we  saw  a  movie,  got  some  food,  we  were  holding  hands.  And,   you  know,  it  was  just  a  really  nice  experience  and  I  think  that  was  really  like  the   first  time  when  I  felt  as  though  like  “wow,  I  actually  really  like  somebody.”     Another  young  man  saw  them  and  told  Kevin’s  mother.  By  the  time  Kevin  arrived  home,   “my  mother  asked  me,  ‘was  I  gay?’  and  I  kind  of  choked  up  because  I  was  not  expecting   anything  like  that  at  all.  And  she  was  crying  and  then  I  got  put  out  after  that.”  Kevin   began  his  discovery  of  his  queer  identity  as  a  result  of  a  single  incident,  a  date  that  he   was  not  expecting.  He  found  he  could  have  a  good  time  and  be  attracted  to  someone  of   the  same  sex.  What  he  also  did  not  expect  was  to  be  confronted  by  his  mother  when  he   arrived  home.  At  age  fifteen  he  found  himself  homeless  and  alone.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     After  being  kicked  out  by  his  mother,  Kevin  survived  by  sleeping  in  parks  

  76  

downtown,  staying  with  people  he  met  while  downtown,  or  by  “couch  hopping.”  Couch   hopping  is  defined  as  sleeping  on  the  couch  of  a  friend  or  acquaintance  for  a  period  of   time  before  moving  on  to  the  next  person’s  couch.  He  remained  homeless  for  three   years.    

Being  homeless  affected  Kevin  in  several  ways.  As  he  described  it:   Throughout  my  high  school  years,  yes.  I  feel  like  my  grades  dropped  and  I  kind   of  didn’t  get  to  do  things  that  high  schoolers  and  teenagers  were  doing  so  I  never   got  to  really  hang  out  with  friends  and  I  never  got  to  play  sports  after  school,   and,  you  know,  like  be  in  clubs  or  be  in  theater  or  just  things  like  that,  because  it   was  always  something  going  wrong  where  I  had  to  leave  school  or  not  be  in   school  for  you  know  like  a  certain  period  of  time.  So  I  feel  like  I  missed  out  on  a   lot  of  extracurricular  activities.  

Kevin  did  not  get  to  participate  in  activities  that  many  high  school  students  did.  He  was   forced  to  survive  and  this  affected  his  grades  as  well.  He  missed  periods  of  school.      

Kevin’s  queer  identity  began  forming  with  his  first  date  and,  despite  this  

inauspicious  start,  continued  to  develop  throughout  high  school.  About  this  experience   he  said:   Well,  this  all  happened  in  eighth  grade,  so  in  ninth  grade  I  came  out  in  school.   Thank  goodness  I  went  to  a  more  suburban  high  school,  so  it  wasn’t  really  as,   “Oh  my  god,  shocking.”  Like,  people  cared,  but  it  wasn’t  like  a  huge  deal.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     77   Because  Kevin  went  to  a  suburban  high  school,  he  felt  he  was  able  to  come  out  and  still   be  safe.  This  allowed  him  to  continue  to  develop  his  queer  identity  in  the  relative  safety   of  his  school  environment.    

Kevin  first  visited  the  LGBTQ  youth  center  when  he  was  sixteen-­‐years-­‐old.  Since  

age  nineteen,  it  has  also  been  his  place  of  employment.  When  asked  what  he  liked  about   the  center,  he  replied:   The  thing  that  I  like  most  about  the  [youth  center]  is  just  the  fact  that  it’s  a  space   where  everyone  can  feel  safe,  but  also  I  like  the  fact  that  there  are  fun  things  to   do  like  dancing  and  theater  and  cooking,  but  there  are  also  more  like  life  skills   related  things,  such  as  like  job  help  and  resumé  and  FAFSA  [Free  Application  for   Federal  Student  Aid]  help  and  things  like  that.    

Kevin  found  a  myriad  of  activities  at  the  center.  These  ranged  from  recreation  to  

job  and  school  supports.  Another  important  aspect,  that  he  did  not  name  directly,  was   community;  this  was  apparent  when  he  talked  about  a  space  where  everyone  could  feel   safe.  This  sense  of  community  can  also  be  seen  in  the  breadth  of  things  that  the  center   did  for  him.  Kevin  found  the  recreational  and  creative  outlets  to  be  as  important  to  him   as  he  did  the  job  skills  building  and  help  with  school.  In  this  way,  he  used  the  center  to   help  him  build  a  sense  of  community  and  to  further  develop  his  queer  identity.    

In  spite  of  the  fact  that  he  did  not  have  stable  housing  during  his  high  school  

years,  Kevin  was  able  to  develop  his  academic  identity.  About  his  housing  situation  and   schooling  he  said:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     78   So  sometimes  I  would  get  up  at  four  am,  leave  about  four-­‐thirty,  catch  two  trains,   three  buses  to  get  all  the  way  over  to  school,  get  there  by  seven,  be  at  school   from  seven  to  two,  and  then  go  to  work  from  three  to  nine.  And  when  I  get  back   to  [where  I  was  staying]  it’s  about  midnight.  By  the  time  I  shower,  eat,  do  my   homework,  have  my  clothes  ready  for  the  next  day,  it’s  already  like  1:30,  2   o’clock  and  I  have  to  be  up  two  hours  later.   Kevin  valued  his  education  and  worked  hard  at  it.  He  was  dedicated  to  his  education.  He   put  himself  under  tremendous  stress  by  only  sleeping  two  to  three  hours  a  night  and   not  knowing  where  he  would  be  sleeping  from  day-­‐to-­‐day.  And  yet,  he  continued  to   attend  school.  He  explained:     So  that  was  really  stressful  and  I  always  thought  about  dropping  out  or  flunking   out  of  school  because  it  was  just  very,  very  tough.  But  thanks  to  my   grandmother,  and  she  passed  away  when  I  was  fourteen,  so  I  always  kept  her   words  with  me  about  “education,  education,  education,”  and  it  really  pushed  me   to  be  a  better  person.   Although  Kevin  was  discouraged  at  times,  his  academic  identity,  something  that  was   supported  earlier  in  his  life  by  his  grandmother,  helped  him  to  maintain  his  schooling  as   a  priority.  He  was  able  to  overcome  the  stress  and  thoughts  of  dropping  out  by   remembering  the  words  of  his  grandmother  and  her  admonition  to  complete  his   education.    

In  contrast  to  his  academic  identity,  Kevin’s  mathematical  identity  was  more  

problematic.  He  stated:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     79   So,  I  don’t  like  how  my  high  school  kind  of  placed  us.  So,  how  my  high  school   placed  us  in  mathematics  is  basically  they  would  test  you  beforehand  and   depending  how  well  you  did  on  your  test,  that  kind  of  depended  on  where  you   were  the  following  year  in  school.  So  I  usually  tested  pretty  high,  so  all   throughout…  well,  especially  through  my  eleventh  and  twelfth  grade  in  high   school,  I  was  in  Pre-­‐Calc  and  AP  Calc  and  all  these  crazy  maths  just  because  I   scored  high  on  my  tests  in  the  previous  years.  But  I  really  feel  as  though  that   kind  of  hurt  me  because,  although  I’m  good  at  certain  math,  I’m  not  good  at  math   in  general.     His  positive  performative  identity,  as  indicated  by  his  high  test  scores,  placed  him  in   courses  that  he  felt  were  too  advanced  for  his  abilities.  However,  his  perceptual   mathematical  identity  was  low  and  caused  a  conflict  within  Kevin.  This  conflict  caused   his  mathematical  identity  to  suffer.  While  he  was  doing  well  in  mathematics,  the  stress   of  being  placed  in  higher-­‐level  mathematics  courses  seemed  to  have  been  more  than   Kevin  could  manage.  His  mathematical  identity  suffered  due  to  his  lack  of  a  belief  that   he  could  perform  in  all  courses,  despite  his  high  test  scores.    

Even  with  the  weaker  aspects  of  his  perceptual  mathematical  identity,  Kevin  

eventually  developed  an  appreciation  for  his  placement  in  higher-­‐level  mathematics   classes  in  high  school.  He  gained  this  perspective  when  he  was  placed  in  a  less-­‐ challenging  math  class  in  college.      He  said:   I’m  sitting  there  like,  “I  know  this  stuff  already,”  but  everyone  else  around  me  is   freaking  out  and  panicking  and  they  don’t  know  what  they’re  doing  or  what   they’re  looking  at.  And  I’m  sitting  there,  looking  like,  “I  learned  all  this  in  tenth  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     80   grade.”  So,  although  I  didn’t  really  care  that  my  [high]  school  pumped  me  up  so   far,  I  do  appreciate  it  because  it  puts  me  further  ahead  in  life  and  the  future.   Notwithstanding  Kevin’s  frustration  at  being  placed  in  higher-­‐level  mathematics  in  high   school,  his  experience  in  college  seemed  to  have  helped  him  to  develop  an  appreciation   for  the  mathematical  work  he  did  earlier.  Based  on  his  statement,  this  boost  in  his   confidence  seemed  to  also  have  enhanced  his  mathematical  identity.    

Kevin  felt  there  was  some  sort  of  connection  between  being  queer  identified  and  

the  way  that  he  learned  subjects  such  as  mathematics.  He  stated:   I  was  kind  of  like  intimidated  to  really  ask  questions  about  certain  things,  or   really,  you  know,  try  and  like  bring  up,  like,  topics  or,  like,  debate  something  that   someone  in  the  class  said  or  that  the  teacher  said,  because  I  didn’t  want  the  class   to  feel  like,  “Oh,  that  gay  kid  is  talking  again,  that  gay  kid  is  asking  questions   again.”  So,  I  do  remember  a  time…  um,  and  I  recall  times  in  math,  too,  where  I   would  be  sitting  there  and  I  don’t  quite  understand  something  or  I  don’t  agree   with  something,  but  instead  of  like  raising  my  hand  or  saying  something  I  just   kept  my  mouth  shut  because  I  just  felt  like  I  didn’t  want  to  stand  out  more  than  I   already  did,  you  know?   We  saw  in  this  statement  someone  who  felt  a  conflict  between  his  mathematical   identity  and  his  queer  identity.    Kevin  did  not  want  to  stand  out  as  a  noisy,  gay  student.   He  felt  a  need  to  ask  questions  but  was  inhibited  because  of  his  queer  identity   intimidated  by  his  classmates.      

Kevin  was  queer  identified.  His  queer  identity  was  about  stepping  outside  of  the  

male/female  binary  and  trying  to  find  a  place  where  he  could  be  “comfortable.”  Kevin  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   was  the  only  one  of  the  participants  to  face  outward  hostility  and  rejection  by  his  

  81  

mother  based  on  his  sexual  identity.  As  a  result  of  his  mother’s  rejection  he  was   homeless  for  several  years.    

Kevin  found  a  sense  of  community  at  the  youth  center.  This  sense  of  community  

nurtured  his  queer  identity  and  supported  him.  His  academic  identity  was  quite  strong   and  even  while  homeless,  he  found  the  strength  to  finish  his  high  school  education.      

His  mathematical  identity,  in  contrast,  was  mixed.  While  he  understood  the  value  

of  mathematics,  he  felt  forced  to  take  classes  that  he  felt  were  too  advanced  for  his   abilities.  Taking  more  advanced  classes  became  useful,  however,  when  he  was  taking   his  college  mathematics  courses.  Kevin  was  the  one  student  who  was  not  overwhelmed   by  the  courses.      

In  spite  of  the  positive  experience  Kevin  relayed  about  his  college  mathematics  

courses,  there  was  one  aspect  of  his  mathematical  identity  that  was  troubling.  This   aspect  was  that  Kevin  did  not  always  ask  question  when  he  had  them  for  fear  of  being   thought  of  as  a  pushy  gay  person.  It  is  possible  that  his  mathematics  education  was   negatively  impacted  because  his  queer  identity  was  not  strong  enough  for  him  to  have   the  self-­‐confidence  to  fully  participate  in  the  mathematics  classroom.   Zeb    

Zeb  was  a  20-­‐year-­‐old,  Caucasian  male  who  identified  as  gay.  He  attended  

community  college  in  a  large,  east  coast  city.  His  major  was  hospitality  management.  He   hoped  to  work  in  a  hotel  and  eventually  manage,  or  own,  a  hotel.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     82   Zeb  was  an  only  child  and  was  raised  by  his  mother  in  a  single  parent  household.   Zeb  described  the  impact  of  growing  up  without  a  father  on  his  queer  identity  when  he   stated:     I  see  myself  ever-­‐growing,  you  know,  because  I  never  really  had  a  father  figure  in   my  life,  so  there’s  just  like  a  lot  of  male  role  models  in  the  gay  world  and,  I  don’t   know,  I  just  look  up  to  some  of  them.   Zeb,  who  grew  up  without  a  father,  was  looking  for  male  role  models.  While  the   functions  of  a  father  figure  often  differ  from  those  of  a  role  model,  at  times  they   intersect.  In  gay  culture  this  is  often  true.  Zeb  explained:     Yeah,  because  there’s  just,  you  know,  gay  me  and  myself,  I  want  to  know,  you   know,  other  stuff  like  about  sex  and  health.  And,  you  know,  I  want  to  know  what   other  gay  men  go  through.  Like,  am  I  going  to  go  through  the  same  process   they’re  going  through?   Zeb  felt  somewhat  isolated.  As  he  said,  “there’s  just,  you  know,  gay  me  and  myself.”  This   is  in  contrast  to  Gerald  who  found  community  to  be  a  large  part  of  his  identity;  Zeb   seems  to  have  more  of  an  “I’m  in  it  alone”  mentality.  There  is  a  contrast  here  however,   in  that  while  he  seemed  somewhat  isolated,  at  the  same  time  he  was  curious  about   whether  he  had  the  same  experience  that  other  men  had.    

Zeb  first  came  out  to  his  friends  during  the  middle  of  his  sophomore  year  in  high  

school.  He  said:   Most  of  them  weren’t  really  too  shocked,  like  they  kind  of  knew.  And  some  of   them  were  like,  “okay,  what  do  you  want  me  to  do  about  it?”  That  was  it.  They   were  really  supportive  and  they’re  still  supportive  of  me.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     83   Zeb  found  support  for  his  queer  identity  from  his  friends  at  school.  None  of  them  were   very  surprised  by  his  coming  out.        

A  year  after  coming  out  at  school,  he  came  out  to  his  mother.  This  time  he  did  not  

get  the  initial  support  that  his  friends  offered.  As  Zeb  told  it:   Well,  the  conversation  started  because,  you  know,  this  boy  kept  calling  my   house,  because  we  were  kind  of  dating  at  the  time,  and  she  was  wondering  why   he  was  calling  the  house.  So  I  told  her,  you  know,  “Hey  mom,  I  have  to  tell  you   something.  I’m  gay.”  And  she’s  like,  “No  you’re  not.  You’re  just  bisexual.  You’re   just  curious.”  And,  because  I  kind  of  had  a  girlfriend  in  the  past  so  I  say  so,  but,   and  she  blames  it  on  her  [the  ex-­‐girlfriend]  and  I  was  like,  “You  shouldn’t  be   blaming  this  on  anyone.  You  know,  I  am  who  I  am.”      Zeb  came  out  to  his  mother  as  a  result  of  a  situation  in  which  a  young  man  Zeb  was   dating  kept  calling  him.  She  struggled  at  first  to  accept  her  son’s  sexual  orientation.     Although  Zeb  does  not  indicate  why,  his  mother  eventually  did  accept  him  as  gay  and,  as   Zeb  described  it,  “Now  it’s  all  good.”      

Zeb  attended  a  high  school  that  was  in  the  process  of  developing  a  GSA.  It  was  at  

the  inaugural  meeting  of  the  GSA  that  he  learned  about  the  LGBTQ  youth  center.  While   the  GSA  did  not  get  off  the  ground  when  Zeb  was  in  high  school,  he  was  still  able  to  gain   important  information  as  a  result  of  the  planning  process  for  the  GSA.  He  said  of  the   process,  “It  was  just  starting  to  slowly  form  for,  I  don’t  know  why,  a  lot  of  school   programs…  a  lot  of  clubs  have  trouble  getting  off  the  ground.”  While  he  was  able  to  gain   some  benefit  from  the  emerging  group,  Zeb  was  not  able  to  avail  himself  of  the  support   of  an  established  GSA.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     84     The  youth  center  provided  Zeb  with  various  types  of  services.  As  he  related:   Well,  I  decided  to  go  to  the  [center]  because  I  was  struggling  in  college  with  my   writing  course  and  with  other  courses  as  well  as  math.  So  I  knew  they  had   educational  resources  and  I  started  taking  advantage  of  them.  They  also  had  job   resources,  so  I  started  taking  advantage  of  them  as  well.  They  helped  me  create  a   resumé.  You  know,  they  got  me  a  few  internships  in  the  past,  so  I  took  advantage   of  them  [the  internships].   Zeb  was  initially  enticed  to  the  center  by  the  educational  services  it  offered.  Zeb   demonstrated  how  much  he  valued  education  despite  obstacles  that  he  faced.  He   described  his  challenges  as,  “Well,  because  I  was  ADHD  and,  you  know,  I  was  still  in  the   Special  Ed  program  at  that  time  and  I  wasn’t  the  very  best  at  math.”  Zeb  told  us  that  he   had  ADHD,  a  condition  that  made  it  difficult  to  concentrate  and  stay  focused.  He  was   also,  “not  the  best  at  math.”  In  spite  of  these  challenges  he  still  valued  his  education,   which  helped  him  to  develop  his  academic  identity.      

Zeb  was  also  interested  in  the  job-­‐related  services  and  resumé  help.  When  asked  

what  he  liked  most  about  the  center,  he  replied:   It  is  just  a  fun,  friendly  environment  where  everyone  can  get  along.  We  can  have   really  serious  discussions,  and  I  just  love  the  job-­‐readiness  skills  as  well.  They   offer  a  lot  of  job-­‐readiness  skills  that  are  really  valuable  to  me  when  I’m  looking   for  a  job.  And  as  I  get  older  I’m  slowly  maturing  with  their  help.   Zeb  enjoyed  the  community  that  he  found  at  the  center.  He  described  it  as  “fun”  and   “friendly.”  Through  these  community-­‐based  activities  Zeb  is  maturing  in  his  queer   identity.  Along  with  the  community  aspects  of  the  center,  he  reiterated  that  he  was  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     85   excited  by  the  availability  of  job  preparation  activities.  The  job  preparation  activities   are  helping  him  mature  in  other  aspects  of  his  personality  as  well.    

Of  the  internships  he  secured,  he  said,  “They’ve  helped  me  grow  as  a  mature  

male.  You  know,  I  made  a  few  mistakes  with  internships  and  they  just  helped  me  point   out  those  mistakes  and  turn  those  weaknesses  into  strengths.”  Here  we  saw  another   theme  with  Zeb,  that  of  growth  and  maturation.  Not  only  did  the  youth  center  assist  in   the  development  of  a  queer  identity,  the  center  supported  the  development  of  the  total   individual.  His  academic  identity  was  developing  because  he  saw  learning  as  a   continuous  process.  Learning  transcended  the  academic  arena  and  was  continued  in  his   internships.  Zeb  said,  “I  see  myself  ever  growing…  I  can  get  a  better  chance  of  having  a   learning  experience  and  can  learn  new  skills,”  an  indicator  that  he  was  developing  his   academic  identity.    

In  contrast  to  his  academic  identity,  Zeb’s  mathematical  identity  was  varied.  Zeb  

saw  the  usefulness  of  mathematics  and,  for  the  most  part,  saw  that  he  had  the  ability  to   obtain  mathematical  knowledge.  He  said,  “Well,  I  use  it  mostly  every  single  day.  I  have  a   calculator  and  I  just  get  bored,  so,  you  know,  if  I  want  to  know  the  answer  to  something,   I’ll  just  type  it  on  my  calculator.”  Zeb  saw  calculating  numbers  as  a  way  to  entertain   himself.  He  used  mathematics  on  a  daily  basis  and  saw  it  as  useful  in  many  ways.  He   continued:   But  geometry  was  definitely  my  favorite  class  and  after  geometry  I  never  looked   at  a  circle  the  same  way  again.  I  was  like  splitting  it  in  half,  splitting  it  in  eighths.   All  of  these  equations  are  popping  through  my  head  and  it  was  just  so  crazy.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Geometry  was  Zeb’s  favorite  subject  in  high  school  and  he  found  equations  to  be  

  86  

“popping  through  my  head,”  which  indicated  strong  aspects  to  his  perceptual   mathematical  identity.  At  times,  however,  with  certain  mathematical  topics,  his   mathematical  identity  suffered.  Zeb  stated:   Math  is  not  my  best  subject.  I’d  rather  stay  out  of  the  math  classroom,  unless  it’s   maybe  geometry  or  a  little  bit  of  trigonometry,  then,  you  know,  I’ll  take  that   class.  But  when  it  comes  to  graphs,  I  shy  away  from  the  graphs.  I  do  not  like   graphs  in  math.   Zeb  expressed  a  conflict  within  his  mathematical  identity.  He  both  liked  and   appreciated  mathematics,  yet  with  certain  topics,  he  became  uncomfortable.  He   expressed  his  desire  to  not  be  in  the  mathematics  classroom  and  yet,  in  the  same   breathe;  he  gave  a  condition,  “Unless  it’s  maybe  geometry  or  a  little  bit  of   trigonometry…”  For  Zeb  we  saw  both  the  desire  to  perform  mathematically,  and  the   desire  to  avoid  performance  in  mathematics.  He  did  not  do  well  when  the  topic  was   graphing,  yet  relished  the  topics  of  geometry  and  trigonometry;  hence,  the  conflict  in   his  mathematical  identity.      

Zeb  identified  as  a  gay  man,  and  like  Avis  did  not  use  the  term  queer  to  identify  

himself.  He  spoke  of  receiving  support  from  friends  at  school  for  his  queer  identity,  and   that  support  continued  through  his  college  years.  When  Zeb  came  out  to  his  mother,  she   initially  denied  that  he  could  be  gay.  Gerald’s  mother  had  a  similar  reaction  when  he   came  out  to  her.  Eventually  both  mothers’  changed  their  minds  and  were  able  to  accept   their  sons’.  The  youth  center  provided  Zeb  with  support  for  who  he  was  as  a  student,  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     87   and  as  a  gay  man.  As  a  student  he  sought  support  for  both  his  English  and  mathematics   courses.    

 Zeb  was  conflicted  about  his  mathematical  identity.  He  enjoyed  some  types  of  

mathematics,  and  saw  them  as  useful,  while  he  avoided  other  mathematical  topics.   Marryl    

Marryl  was  Caucasian,  21-­‐years-­‐old,  and  attended  a  mid-­‐sized  arts  college  in  a  

large,  east  coast  city.  When  asked,  “how  do  you  define  yourself?”  Marryl  used  the   definition  of  gender  queer.  When  asked  what  pronouns  Marryl  preferred,  they  replied,   “they  and  them,”  rather  than  the  single  gender  pronouns  he  or  she,  him  or  her.  Because   Marryl  preferred  the  pronouns  they  and  them,  when  referring  to  Marryl  they  and  them   are  used  throughout  this  work.  Marryl  saw  themselves  as  a  third  gender,  neither  male   nor  female,  and  sometimes  played  with  the  idea  of  poly-­‐genderism.  That  is  to  say  that   Marryl  considered  the  idea  of  being  multi-­‐gendered  -­‐-­‐  simultaneously  male,  female  and   other  genders,  all  at  the  same  time.  As  they  described  it,  “  …  [it]  is  like  a  gender  that   encompasses  a  broader  part  of  the  gender  spectrum  in  terms  of  also  going  into  areas  of   male  gender-­‐ness  and  female  gender-­‐ness...”  At  times,  Marryl  described  their  gender  as   a  third  gender  and  at  times  as  a  mix  of  genders.  Here,  queer  took  on  a  meaning,  as   Wilchens  (1997)  explained  it,  as  having  stepped  outside  of  a  binary.  Marryl  found  the   binary  of  male-­‐female  to  be  limited  and  not  applicable.  Marryl  had  conducted  a  deep   self-­‐exploration  about  their  gender  identity.  As  they  explained  it:   So,  unlike  working  out  my  sexual  orientation,  which  was  a  pretty  private   exploration  because  I  didn’t  know  who  to  talk  to…  Trying  to  figure  out  my  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     88   gender  identity  was  something  that  I  was  much  more  open  to  external  support   with…  So  there  was  several  people  at  the  [youth  center]  who…  and  my  therapist   for  instance…  who  were  there  for  the  process  of  me  figuring  out  my  gender-­‐   queer  identity.   As  a  result  of  this  self-­‐exploration,  they  had  a  complex  understanding  of  what  it  meant   to  possess  a  queer  identity.    

They  described  their  sexual  orientation  as  follows:   And  then,  in  terms  of  sexual  orientation,  probably  the  only  succinct  way  to   describe  it  is  queer,  because  it’s  not  really  just  any  one  single  gender  that  I’m   attracted  to.  I  mean,  I’m  attracted  to  female-­‐identified  people,  trans-­‐identified   people,  male-­‐identified  people  who  are  not  born  male.    

For  Marryl,  queer  was  their  primary  sexual  identity.  They  found  that  they  could  be   attracted  to  a  variety  of  different  people,  as  long  as  they  were  not  born  male.      

Queer,  however,  was  more  to  them  than  a  sexual  identity:  it  was  also  a  political  

construct.  They  described  this  construct  in  the  following  way:   In  terms  of  how  I  see  it  being  political,  …like  um  making  life  decisions  that  are   like  “for  a  queer  political  identity,”  figuring  out  whether  or  not  like  um  being  in   favor  of  gay  marriage  or  recognizing  gay  marriage,  is  you  know,  is  assimilating   into  a  heteronormative  system  of  like  trying  to  figure  that  out  like  [through  a]   “queer”  lens  …   For  Marryl,  queer  was  political  in  trying  to  step  outside  of  heteronormativity.  It  was  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     89   matter  of  finding  that  unique  “queer  lens”  through  which  to  see  things.  Being  political   was  more  than  just  whom  they  would  support  in  an  election;  it  was  their  worldview.  It   was  about  the  way  Marryl  made  decisions.    

Coming  out  was  a  lengthy  and  somewhat  complicated  process  for  Marryl.  After  

having  attended  several  GSA  meetings  in  high  school,  they  came  out  as  lesbian.    They   were  15-­‐years-­‐old.  Their  parents  were  supportive,  as  were  friends  and  teachers.   Processing  gender  identity  issues  came  four  years  later  when  they  went  to  the  LGBTQ   youth  center.  Marryl  described  this  experience  as:   …trying  to  figure  out  my  gender  identity  was  something  that  I  was  much  more   open  to  external  support  with,  because  at  the  time  I  was  dealing  a  lot  with   depression  and  anxiety  so  it  was  something  I  needed  badly,  to  have  other  people   be  there  to  support  me  as  I  was  figuring  this  out  for  myself.  So  there  was  several   people  at  the  [center]  who,  and  my  therapist  for  instance,  who  were  there  for  the   process  of  me  figuring  out  my  gender-­‐queer  identity…  I  was  a  female-­‐gender  one   moment  and  then  my  community  was  there  to  help  me  figure  out  what  this   identity  process  was  and  getting  to  the  other  side  of  it.  So  there  wasn’t  really  a   coming  out  process  there,  it’s  just  more  of  a  coming  into  this  new  identity   process,  I  guess  you  could  say.     Marryl  did  not  consider  the  process  of  coming  into  their  gender  identity  a  coming  out,   but  rather  a  self-­‐discovery.  The  process  was  relatively  straightforward  though  it  began   with  Marryl  having  suffered  with  depression  and  anxiety.  Through  the  support  they   received  at  the  youth  center,  whether  from  a  therapist,  staff  members  or  other   supportive  individuals,  Marryl  made  the  transition  from  lesbian  to  gender-­‐queer.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     90     They  initially  visited  the  youth  center  because  a  therapist  recommended  it  to   them.  Another  part  of  their  original  reason  for  visiting  the  youth  center  was  a  lack  of  a   GSA  at  the  college  they  were  attending  at  that  time.  Marryl  recognized  their  need  for   community  and  decided  to  see  what  was  available.  When  asked  what  they  liked  about   the  center,  they  replied:   …  I  think  the  first  thing  I  fell  in  love  with  about  the  [center]  was  within  the  first   five  minutes  that  I  walked  into  the  [center]  I  was  greeted  with  warmth  and   acceptance  even  though  I  had  never  met  any  of  these  people  before.  But   everyone  that  I  met  was  very  friendly  in  a  way  that  they’re  warm  and  accepting   but  also  respecting  my  boundaries.   From  their  first  visit,  they  felt  comfortable  and  at  home.  Marryl  had  found  a  community   that  accepted  who  they  were.  Marryl  felt  that  the  other  people  at  the  center  were   respectful  and  accommodating.  They  said:   I  think  that’s  what  really  kept  me  here,  you  know,  in  terms  of  I  really  wanted  to   come  back  because  this  was  one  of  the  few  spaces  that,  ever  since  the  first  day,  I   felt  it  was  a  community,  I  could  participate,  I  felt  valued  in.   Marryl  had  found  a  community  where  they  belonged  and  this  gave  them  a  sense  of   being  valued.        

Marryl  continued  returning  for  the  sense  of  community.  There  were  other  

aspects  of  the  center  that  attracted  Marryl  as  well.  According  to  Marryl:   There  was  mythology  and  spirituality  groups  that  I  could  talk  about  my   experiences  and  my  thoughts  and,  as  well  as  art  and  design  groups,  working  with  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     91   [center]  graphics.  Also  working  with  two  of  the  support  groups,  the  women’s   support  group  as  well  as  the  trans’  support  group,  in  terms  of  finding  community   there.  And  also,  through  the  creative  action  groups,  finding  how  I  can  use  the   skills  I’ve  been  training  in  and  using  those  skills  to  support  the  [center],  and  also   working  through  the  [center]  to  support  the  extended  community.   The  support  groups  and  recreational  and  creative  activities  worked  together  to  provide   Marryl  with  a  sense  of  community.      

With  regard  to  their  academic  identity,  Marryl  considered  learning  a  lifelong  

process.  This  was  evidence  of  a  strong  academic  identity.  Marryl  explained:   I  think  all  of  us,  if  we  have  our  eyes  and  ears  and  hearts  open,  then  we’re   students  or  we’re  learners  until  the  day  we  die.  Until  the  very  second  we  die,   we’re  always  learning  something  about  what’s  going  on  in  terms  of  our   environments  and  ourselves.  And  I  very  much  appreciate  that,  because  the  idea   of  being  in  a  place  where  I’m  not  learning  and  I’m  not  in  a  place  of  taking  on  new   information,  new  wisdom,  to  me  that  just  strikes  me  as  one  of  the  most  terrifying   places  to  me,  because  I  just  find  that  continually  learning  and  continually   changing  my  view  of  the  world  and  trying  to  find  a  better  idea  by  learning  more   about  what  other  people  experience  or  what  other  people  have  experienced  over   human  history.  Learning  about  all  that,  I  feel,  enhances  my  life  in  terms  of  how  I   experience  the  world.   This  demonstrated  just  how  important  the  idea  of  learning  was  to  Marryl  and  that  their   academic  identity  was  well  developed.  They  described  how  they  had  a  need  to  be  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     92   constantly  learning.  They  saw  learning  as  a  continuous  process;  something  one  does   throughout  life.      

Along  with  a  developed  academic  identity,  Marryl  possessed  a  similarly  well  

developed  mathematical  identity.  They  attributed  part  of  their  mathematical  identity  to   the  fact  that  their  father,  mother  and  brother  all  had  degrees  in  mathematics  and  all   worked  in  fields  that  concentrated  in  mathematics.  Marryl  stated:       I  definitely  attribute  my  understanding  of  mathematics,  sort  of  like  in  the  duality   of  nature  and  nurture  that  I  think  there’s  definitely  something  going  on  in  terms   of  how  my  brain  is  set  up.  It’s  like;  both  of  my  parents  are  very  mathematical.  My   brother  is  very  mathematical.  I’m  definitely  going  to  have  something  in  me  that   sort  of  processes  in  a  mathematical  way,  even  if  I  don’t  have  a  particular  career   interest  in  working  with  theoretical  mathematics  or  engineering  or  accounting.   In  addition  to  Marryl’s  belief  in  their  ability  to  do  mathematics,  they  also  believed  in  the   usefulness  of  mathematics.  The  strength  of  their  mathematical  identity  was   demonstrated  both  on  a  day-­‐to-­‐day  basis,  as  well  as  with  their  chosen  career  field,   graphic  design.  As  they  explained:     That  there’s  definitely  still  something  go[ing]  on  in  terms  of  problem  solving,   which  is  definitely  one  of  the  root  skills  of  graphic  design,  it’s  that  even  though   it’s  not  numerical,  it’s  visual  communication,  but  there’s  still  the  issue  of   problem  solving  which  makes  graphic  design  different  from  the  visual  arts.   This  demonstrated  how  Marryl  saw  relationships  in  mathematics,  with  problem  solving   being  a  key  component.  Visual  communication,  we  were  told,  is  a  type  of  mathematics,   as  it  was  problem  solving.  This  practical  view  on  the  usefulness  of  problem  solving  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   showed  us  that  Marryl  had  an  appreciation  for  mathematics  and  indicated  a  well-­‐

  93  

developed  mathematical  identity.    

When  asked  about  how  coming  out  had  effected  their  decisions  in  life  Marryl  

described  her  two  passions,  graphic  design,  and  being  queer.  Graphic  design  being   directly  related  to  their  mathematical  identity  in  that  it  they  saw  it  as  very  precise  and   mathematical.  They  replied:      Early  in  my  graphic  design  career  there  was  sort  of  a  split  in  that  I  sort  of   compartmentalized  my  queer  gender  thing  going  on  in  one  corner  and  then  my   art  career  in  another  and  they  didn’t  seem  to  intersect.  But  now  that  I’m  getting   closer  to  graduation  and  dealing  with  my  senior  [project],  they’re  coming  back   together  again  because  now  I  have  to  consider  how  these  two  passions  work   together  because  when  I  graduate  I  actually  have  to  deal  with  life.  …  But  then  not   being  in  school  I  need  to  figure  out  a  way  that  I  can  nurture  and  continue  these   passions  and  then,  if  I’m  going  to  have  time  for  both  of  them,  I  need  to  find  a  way   for  them  to  work  together.   Marryl  has  described  how  their  queer  identity  and  mathematical  identity  intersect.   They  recognize  the  intersection  as  the  place  where  their  graphic  design  interests   (mathematical  identity  being  employed  in  their  graphic  design  work),  and  their  queer   identity  intersect.  The  two  passions,  as  Marryl  referred  to  them,  hopefully  come   together  in  a  synergistic  manner.    

Marryl  identified  as  gender-­‐queer.  Marryl  had  a  nuanced  understanding  of  their  

queer  identity  and  saw  it  both  as  a  social  identity  as  well  as  a  political  identity.  They  had  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     94   gone  through  a  multi-­‐phased  coming  out  process,  first  identifying  as  lesbian  and  four   years  later  coming  to  the  understanding  that  they  were  gender-­‐queer.  Coming  out  was   not  a  traumatic  process  for  Marryl  and  they  found  support  both  at  school  and  at  home.   The  youth  center  with  its  counselors,  supportive  staff,  and  other  youth,  was  a  large  part   of  what  made  the  second  phase  of  coming  out,  as  gender-­‐queer,  relatively  easy  for   Marryl.  The  sense  of  community  they  found  at  the  center  was  instrumental  in  several   different  ways.  Not  only  did  it  help  in  the  process  of  discovering  that  they  were  gender-­‐ queer,  but  it  also  gave  them  guidance  in  their  career  choice,  graphic  design.      

Marryl  had  strong  academic  and  mathematical  identities.  They  attributed  much  

of  their  mathematical  acumen  to  the  fact  that  their  mother,  father,  and  brother  all  had   degrees  in  mathematics  as  well  as  working  in  mathematical  fields.  For  them,  they  saw   that  the  choice  to  work  in  graphic  design  was  a  choice  in  a  mathematically  based,   artistic  endeavor.    For  Marryl  the  intersection  of  mathematical  identity  and  queer   identity  lay  in  being  able  to  simultaneously  explore  their  self  described  passion  for   queer  identity  and  graphic  design.     Tabatha    

Tabatha  was  a  21-­‐year-­‐old,  Caucasian  female,  who  identified  as  lesbian.  She  was  

taking  time  off  from  college,  but  planned  to  return.  She  was  unsure  about  the  direction   she  planned  to  take  when  she  returned  to  school.  She  suffered  from  severe  anxiety  and   depression  and  was  working  on  trying  to  resolve  these  issues  in  a  manner  that  would   allow  her  to  return  to  school.    

Although  she  identified  as  lesbian,  Tabatha  was  open  to  describing  herself  as  

queer  because  she  was  willing  to  step  outside  of  the  gender-­‐binary  in  romantic  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     95   situations.  Her  understanding  of  what  it  meant  to  step  outside  the  gender-­‐binary  was   described  as,  “…  Considering  yourself  outside  the  gender-­‐binary  or…having  a   relationship  with  someone,  I  would  say,  anyone  except  a  gendered  male.”  She   considered  queer  in  terms  of  physical  attraction  and  relationship  building.  Her  view  of   queer  is  somewhat  limited  though  she  described  it  non-­‐heteronormatively,  outside  of   the  gender  binary.      

Tabatha  began  the  coming  out  process  in  high  school:   I  came  out  to  my  friends  and  my  whole  school,  teachers,  when  I  was  a  freshman   in  high  school,  so  I  think  I  was  fourteen.  So  I  had  my  first  girlfriend,  start  going   out  the  Saturday  before  high  school  began.    

She  started  the  coming  out  process  by  seeking  the  support  of  friends  and  teachers.   Tabatha  was  comfortable  enough  to  have  had  a  girlfriend  at  14  and  this  showed  that   she  was  developing  a  queer  identity.      

Her  mother  was  the  next  person  to  whom  she  came  out.  However,  this  process  

took  some  time.  As  Tabatha  related:   My  mom  actually  confronted  me  when  I  was  a  freshman  in  high  school.  She   asked  me  if  I  was  gay  and  it  came  out  of  nowhere,  her  asking  me,  and  I  was  so   isolated  from  my  family  that  I  didn’t  like  them  in  any  of  my  business.  Also,  I’m   fourteen,  wasn’t  sure  how  she  was  going  to  handle  it…  So,  it’s  understandable,  I   was  fourteen,  I  was  scared.  I  denied  to  my  mom.  I  was  like  “No,  no,  what  are  you   talking  about?”   From  this  statement  we  saw  that  Tabatha  was  not  ready  to  come  out  to  her  mother.  At   the  same  time,  she  had  come  out  at  school  and  was  dating  which  indicated  some  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     96   openness  on  her  part  to  begin  the  coming  out  process.  This  pointed  out  a  conflict  for   Tabatha;  she  had  come  out  at  school  and  yet  was  not  ready  to  come  out  to  her  mother.   This  denial  to  her  parents  continued  for  another  four  years.  Tabatha  said:   And  one  day,  as  I  was  leaving  the  condo,  my  mother  stopped  me  and  she  wanted   to  have  a  conversation  on  the  couch  with  my  step-­‐dad.  And  the  conversation   went  like,  “Okay,  are  you  in  a  polyamorous  relationship  with  Snap  and  Hailey?”   My  mother  actually  asked  me  that,  and  I  burst  out  laughing  and  I  was  like,  “No   that  would  never  happen.  I  could  not  be  in  a  relationship  with  both  of  them  for   the  fact  that  Snap  is  half  of  that  relationship.”  (Tabatha  did  not  like  Snap.)  And   then  they  were  questioning  that  more  and  then  more  back  and  forth  went  going   on,  I  remember  the  end  point  of  that  was,  I  was  like,  “Okay,  who’s  going  to  say  it?   Am  I  going  to  say  it?  Is  he  going  to  say  it?  Or  are  you  going  to  say  it?”  And  my   step-­‐dad,  Jack,  was  like,  “Can  I  say  it?”  And  my  mom  was  like,  “No,  no”  to  him  and   was  like,  “Tabatha,  Tabatha  just  say  it.”  And  so,  with  my  hand,  I  did  a  little  halo   thing  and  was  like,  “Gay.”  And  my  mom  was  like,  “Hallelujah.”   Thus,  Tabatha  came  out  to  her  mother  and  stepfather.      

Based  on  the  interaction  described  above,  we  saw  that  Tabatha  was  in  the  

process  of  developing  a  queer  identity.  She  had  the  support  of  her  mother  and  step-­‐ father,  even  if  she  was  in  a  polyamorous  relationship.  Further,  we  saw  that  Tabatha  had   a  sense  of  humor  about  her  queer  identity.  She  laughed  at  the  prospect  of  being  in  a   polyamorous  relationship,  rather  than  denying  it.  This  humor  showed  a  level  of  comfort   with  her  queer  identity  that  she  had  not  demonstrated  previously.  Tabatha  explained:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     97   And,  at  the  point,  after  four  years  had  passed,  I  didn’t  think  my  mom,  it  didn’t   come  across  my  mind  that  I  was  scared  or  that  she’s  going  to  throw  me  out.  It’s   just  I  don’t  like  her  knowing  any  of  my  business.  I  was  very  private  back  then   and  so  after  that,  also  then,  you  know,  my  mom’s,  every  female  friend  that  I  have   she’ll  want  to  question…   This  statement  further  confirmed  that  she  had  become  more  comfortable  with  her   queer  identity.    It  also  told  us  something  about  her  state  of  mind  when  she  had  initially   denied  her  queer  identity  to  her  mother.  At  the  point  of  denial,  she  was  scared  of  being   thrown  out  of  the  house.    

Tabatha  came  to  the  LGBTQ  youth  center  because,  “One  of  my  housemates,  he  

used  to  come  here  and  I  was  looking  for  therapy.  And  then  when  I  was  at  [therapy   center]  they  also  told  me  about  the  [youth  center]  and  to  try  to  get  therapy  here…”   Tabatha  was  looking  for  therapy  to  help  her  deal  with  anxiety  and  depression  issues.   She  explained,  “…dealing  with  a  lot  of  my  anxiety  that  I  have  and  depression  and  how   I’m  doing  a  lot  better  than  what  I  was  last  winter.  I  had  to  withdraw  from  school…”   Anxiety  disorders  and  depression  are  not  unusual  for  queer  identified,  young  people   (Almeida,  Johnson,  Corliss,  Molnar,  &  Azrael,  2009).      

While  she  may  have  initially  visited  the  youth  center  to  see  a  therapist,  Tabatha  

stayed  for  other  reasons.  As  she  stated,  “I  would  say  I  like  the  staff  the  most.”  She  began   forming  relationships  with  the  staff  immediately.  Part  of  the  reason  for  this  was,  she   explained,  “I’ve  always  gotten  along  better  and  enjoyed  the  company  of  people  older   than  myself,  but  I  never  really  had  that  many  opportunities  when  I  was  living  [in  my   hometown]  for  [getting  to  know]  older  LGBTQ  identified  people.”  Tabatha  saw  a  value  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     98   in  getting  to  know  LGBTQ  people  older  than  herself.  Her  reason  for  getting  to  know   older  LGBT  people  may  have  been  about  her  desire  for  role  models.    

Along  with  liking  the  staff,  there  were  other  aspects  of  the  center  that  she  

enjoyed.  As  she  stated,  “I  really  like  the  groups  here  too.  Even  if  some  of  them  give  me   anxiety  attacks  while  here  and  make  everyone  else  in  the  room  feel  uncomfortable…”   Even  though  Tabatha  had  anxiety,  she  had  discovered  the  social  and  support   opportunities  that  were  available  to  her  at  the  center.    This  support  was  an  important   aspect  of  developing  a  queer  identity  (Blackburn,  2004).    

Beyond  the  social  and  support  opportunities  at  the  center,  she  had  also  come  to  

the  center  to  have  a  creative  outlet.  As  Tabatha  explained:   But  they  have  amazing  groups  like  Career  City  Prints  that’s  so  great,  just  making   wallpaper.  Yesterday,  and  Bobbi  even  commented  on  it,  and  Emerson,  he   commented  on  it  too,  how  great  it  turned  out.  I  had  a  great  teamwork  going  with   Marryl  and  between  the  two  of  us  it  turned  out  really  nice  and  Bobbie  was  like,   “It’s  because  you’re…  I  knew  you’d  be  good  for  this  because  you’re  meticulous.”     Tabatha  told  of  creative  work  that  she  did  in  collaboration  with  others.  Having  a   creative  outlet  was  a  way  for  her  to  work  with  others  in  a  way  she  had  not  done  before   she  came  to  the  center.  This  creative  work  seemed  to  strengthen  the  sense  of   community  that  she  experienced.  She  went  on  to  explain  other  situations  in  which  she   felt  the  community  supporting  her:   And  so  when  I  would  talk  to  Bobbi  about  [art  work],  she  was  always  very   encouraging,  and  I  didn’t  really  have  people  that  were  encouraging.  Like,  “Oh  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity     99   you  could  really  do  this.”  Maybe  they’d  say,  kind  of,  not  really  meaning  it,  but  you   can  tell  they  mean  it.  And  they  want  you  to  try  things  and  you  can  learn  different   skills  and  so  much  knowledge  you  can  take  in  from  all  these  groups  and  even   when  you’re  not  in  groups,  just  interacting  with  the  other  youth  or  hearing   stories,  personal  stories  from  the  staff  here,  which  I  really  appreciate  when  they   do  open  up,  I  want  to  try  opening  up  to  them  because  I  feel  like  my  experiences   can  maybe  help  them,  as  hearing  other  people’s  has  helped  me...     Here  Tabatha  described  how  much  she  was  making  use  of  the  support  she  received.   This  support  strengthened  her  sense  of  community  and  helped  to  give  her  the  courage   to  possibly  speak  about  her  own  experiences.  Tabatha  wanted  to  share  her  own   experiences  in  order  to  be  a  supportive  community  member  in  the  same  way  that   others  had  shared  their  stories  in  order  to  support  her.    

While  Tabatha  did  not  use  the  word  “community”  when  she  described  her  

experience  at  the  youth  center,  she  described  a  community  nonetheless.  Another   example  of  her  desire  for  LGBTQ  community  was  that  she  attended  a  group  called  Girl   Talk.  As  Tabatha  described  it:   There’s  nothing  like  this,  so  to  have  an  all  female-­‐identified  room  full  of  people,   just  talking  about  LBGTQ  things,  it’s  a  dream.  It’s  a  dream  come  true.  It’s  magical,   happy,  Girl  Talk  time.  Yeah.  I  share  in  that  one…   Girl  Talk  was  an  example  of  Tabatha  partaking  in  community,  with  community  defined   as  a  shared  interest.  She  was  connecting  to  the  community  in  ways  that  helped  her   participate  as  a  full  member  of  the  community.  It  helped  her  to  be  more  open  and  to  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   100     share.  It  was  a  positive  experience  for  her.  We  see  this  in  her  stating,  “It’s  magical,   happy  Girl  Talk  time.”    

Tabatha  had  a  varied  history  concerning  her  academic  identity.  When  asked,  

“What  does  it  mean  for  you  to  be  a  student?”  she  replied,  “It  means  I’m  going  to  be  going   through  a  lot  of  anxiety.  That  I’ll  be  having  panic  attacks,  chest  pains,  pressure.”  Her   academic  identity  was  traumatic  with  one  exception:   I  always  did  well  in  math.  That  was  the  one  area  that  I  strived  in,  and  even   freshman  year  in  high  school  it  was  the  class  I  got  straight  A’s  in.  And  I  loved  it   and  I  loved  my  teacher.   This  class  was  not  an  exception,  as  she  continued:   And  then  sophomore  year  I  had  this  teacher,  Mr.  B,  …  I  got  Cs,  Ds,  and  Fs  in  his   math  class.  I’m  pretty  sure  it  was  the  first  time  that  ever  happened.  I  mean,  I   ended  up  passing  the  class  in  the  end,  but,  I  mean,  it  took  a  toll  that  the  subject  I   always  excelled  in,  I  barely  got  by.  And  then  the  following  year  I  had  the  teacher  I   had  for  freshman  year,  got  all  A’s  again.   Tabatha’s  ability  to  do  mathematics  was  inconsistent.  As  she  stated,  “And  then  I  really   started  noticing  a  pattern  that  I  do  very  well  when  I  have  a  female-­‐identified  teacher   and,  when  they’re  male-­‐identified  I  didn’t  pay  attention.”  Tabatha’s  mathematical   identity  was  relatively  well  developed,  but  it  was  conditional.  She  believed  that  she   needed  to  have  female  identified  teachers  in  order  to  learn.  This  was  supported  by  her   experience  in  college:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   101     Then,  when  I  was  in  college,  I  got  to  take  math  [with  a  female  professor];  I  had  to   add  a  class,  that’s  two  classes  in  one  semester  with  the  same  teacher.  It  was  an   eight-­‐credit  class.  And,  oh,  I  loved  that  class.  I  just  got  to  have  math  for  two  and   half,  three  hours  straight.   We  saw  that  Tabatha  was  able  to  do  well  in  a  double  mathematics  class  in  college.    In   fact  mathematics  was  the  one  area  academically  where  Tabatha  was  able  to  excel.  She   enjoyed  mathematics  and  saw  it  as  useful.  She  also  knew  how  to  obtain  mathematical   knowledge,  provided  her  instructor  was  female  identified.  These  indications  together   spoke  of  a  well-­‐developed  mathematical  identity.  Though  this  identity  was  dependent   on  the  sex  of  her  instructor.    

Tabatha  identified  as  lesbian,  though  she  was  open  to  the  idea  of  a  queer  

relationship.  By  the  term  queer  she  was  referring  to  being  open  to  being  in  a   relationship  with  a  transgendered  individual.  She  came  out  at  school  at  the  beginning  of   her  freshman  year  and  felt  supported  in  doing  so.  At  home,  with  her  parents,  however,   it  would  be  another  four  years  before  she  came  out.  One  of  the  reasons  for  waiting  four   years  was  that  Tabatha  was  uncertain  about  how  her  parents  would  react  and  it  took   that  long  for  her  to  be  comfortable  enough  with  her  parents  that  she  was  not  afraid  of   their  reaction.  When  she  finally  did  come  out  to  her  parents,  her  comfort  level  was   obvious  as  she  injected  humor  into  the  situation.      

Tabatha  suffered  from  severe  anxiety  and  depression  and  it  was  to  seek  

treatment  for  these  conditions  that  she  originally  attended  the  youth  center.  Once  there,   she  found  a  welcoming  community  and  participated  in  several  groups.  She  participated   in  the  groups  even  though  several  of  them  brought  up  her  anxiety  disorders.  Because  of  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   the  patience  of  the  other  participants  in  the  Girl  Talk  group  Tabatha  was  able  to  

102    

participate  in  the  group,  making  it  the  highlight  of  her  week.    

School  was  another  place  where  Tabatha  experienced  extreme  anxiety,  to  the  

point  where  she  had  to  drop  out  of  college.  In  both  high  school  and  college  the  one   subject  she  excelled  in  was  mathematics.  There  was  a  caveat  to  this  success;  however,   she  needed  to  have  a  female  teacher  in  order  to  be  successful.     Statement  of  the  Findings    

In  this  section  the  findings  are  presented  and  supporting  evidence  is  provided.  

The  data  are  cross-­‐analyzed  and  intersections  are  explored.  Three  findings  emerged   from  the  cross-­‐analysis  of  the  narratives.    First,  participants  who  used  the  term  queer  to   describe  themselves  did  so  in  one  of  two  ways,  as  stepping  outside  of  the  binary  or  as   community.    Second,  each  of  the  participants  felt  like  part  of  a  community  and   described  how  that  sense  of  community  impacted  their  understanding  of  their  queer   identities.    Third,  the  support  participants  received  at  school  had  an  impact  on  their   queer  identity  and,  in  turn,  their  mathematical  identity.       Participants  who  use  the  term  queer  to  describe  themselves  understand   queer  in  one  of  two  ways.      

Queer  was  a  word  used  by  four  of  the  six  participants  to  describe  themselves.  

The  term  was  understood  in  multiple  ways.  Three  of  the  four  participants  defined  queer   as  being  outside  of  the  binary,  meaning  that  it  is  not  an  either  or  decision,  but  rather  is   on  a  continuum.  The  fourth  participant  to  use  the  term  queer  was  unique  in  their   understanding  of  the  word’s  definition  as  “community”.  The  section  concludes  with  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   discussion  of  the  two  participants  who  do  not  use  the  word  queer  to  describe  

103    

themselves.    

Tabatha  identified  primarily  as  a  lesbian.  She  was  open  to  the  idea  of  being  

queer,  defining  queer  as,  “…  considering  yourself  outside  the  gender  binary…  having  a   relationship  with  someone,  I  would  say,  anyone  except  a  gendered  male.”  Tabatha   believed  that  to  be  queer  was  to  step  outside  of  the  gender  binary,  or,  put  another  way,   to  be  non-­‐heteronormative  in  terms  of  the  people  to  whom  she  was  attracted.  The   groups  she  attended  at  the  youth  center  appeared  to  have  influenced  Tabatha’s   definition  of  queer.  She  spoke  of  regularly  attending,  and  participating  in,  the  Girl  Talk   group.  This  group  was  a  forum  in  which  to  discuss  all  things  female.  Through  these   discussions  Tabatha  was  able  to  explore  and  develop  her  definitions  of  her  own   identities  in  a  safe  and  open  environment.      

Kevin  used  the  term  queer  in  the  same  way  that  Tabatha  used  it.  He  said,  “And  in  

regards  to  my  sexuality  I  date  men  and  I  date  trans-­‐women...”  Tabatha  defined  queer   based  on  the  sex  of  the  people  to  whom  she  was  attracted;  Kevin  also  defined  queer   based  on  his  attraction  non-­‐heteronormative  people.    

Kevin  defined  himself  as  queer  for  an  additional  reason.  He  identified  himself  as  

queer  because  he  stepped  out  of  the  male/female  binary.  He  explained:   Um,  well  for  me  it  means  two  things.  It  means  who  I  am  and  also  who  I  choose  to   date.  So,  being  queer,  um,  in  regards  of  who  I  am  means  I’m  not  really  trying  to   be  a  man  or  trying  to  be  a  woman,  just  trying  to  be  comfortable.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   104     Kevin  stepped  outside  of  the  gender  binary  by  rejecting  the  notion  of  having  to  be   strictly  male  or  female.  In  so  doing,  he  was  defining  queer  for  himself  differently  than   did  Tabatha.      

As  with  Tabatha,  Kevin’s  definition  of  queer  may  have  been  influenced  by  the  

groups  he  attended  at  the  youth  center.  In  these  groups  he  heard  a  wide  variety  of   opinions,  gaining  a  broader  perspective  based  on  the  views,  experiences  and  opinions   of  other  queer  people.      

Marryl,  like  Kevin,  used  the  term  queer  to  define  themselves.  Marryl  was  

stepping  out  of  the  male/female  binary.  They  defined  themselves  as  gender-­‐queer,   explaining:   …But  in  terms  of  functioning,  it’s  third  gender,  so  it’s  neither  male  nor  female.   But  then  there’s  some  experiences  that  I  have  where  that  evolves  into  pan   gender/poly  gender  neutral,  which  is  like  a  gender  that  encompasses  a  broader   part  of  the  gender  spectrum  in  terms  of  also  going  into  areas  of  male  gender-­‐ ness  and  female  gender-­‐ness…   Marryl’s  definition  of  queer  was  far  more  complex  than  any  of  the  other  participants.   Marryl  includes  in  their  definition  the  dimension  of  gender-­‐queer,  a  dimension  not   expressed  by  any  of  the  other  participants.  In  practice  this  makes  Kevin’s  definition  the   same  as  Marryl’s,  although  Marryl  used  more  complex  language  to  explain  it.  Marryl’s   definition  of  what  it  means  to  be  queer  developed  during  the  process  through  which   their  gender-­‐queerness  was  discovered.  They  identified  the  support  that  they  received   from  the  youth  center  as  key  to  creating  the  emotional  space  they  needed  for  self-­‐ discovery.  At  the  youth  center  Marryl  had  the  support  of  a  therapist  and  other  center  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   105     staff,  all  helping  to  create  the  environment  of  support.  Like  Tabatha  and  Kevin,  Marryl   gained  insight  and  knowledge  to  inform  their  definition  of  queer  through  participation   in  the  groups.    

Gerald’s  understanding  of  the  word  queer  was  different  from  that  of  any  of  the  

other  participants.  When  asked,  “What  does  it  mean  for  you  to  be  queer?”  Gerald   responded:   I  find  it  that  the  most  important  part  of  my  identity  is  being  part  of  a  community,   it’s  a  very  loving  community  and  it’s  very  accepting.  I  don’t  know,  I  feel  like  the   community  is  a  big  part  of  my  identity.   Unlike  Tabatha,  Kevin  or  Marryl,  Gerald  did  not  define  queer  in  terms  of  sex  or  gender.   His  definition  of  queer  is  not  of  an  individual’s  traits,  it  is  much  broader.  He  defines   queer  to  be  a  group  of  like-­‐minded  people  with  shared  interests.  His  broader  definition   of  queer  as  community  can  be  understood  partly  by  his  involvement  in  almost  every   aspect  of  the  youth  center.  Although  the  others  have  had  similar  experiences,  they  have   not  included  the  dimension  of  community  in  their  definitions.  Conversely,  Gerald  has   not  included  the  gender  binary  in  his  definition  of  queer.  His  single-­‐minded  definition  of   queer  as  community  may  have  resulted  because  Gerald  had  consistently  enjoyed   community  support  for  his  identity  over  time.  He  had  support  from  the  GSA  community,   the  community  he  had  created  with  his  teacher/mentor,  Mr.  K,  the  community  that  was   his  home  life,  and  the  community  that  he  found  at  the  youth  center.      

Unlike  Marryl,  Kevin,  Gerald,  or  Tabatha,  queer  was  not  the  terminology  Avis  or  

Zeb  used  for  the  purpose  of  self-­‐identification.  Avis  identified  as  bisexual  and  Zeb  as   gay.  For  Avis,  this  was  likely  a  result  of  his  focus  on  academics.  He  wanted  to  be  a  doctor  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   106     above  all  else  and  did  not  make  use  of  the  discussion  groups  at  the  youth  center  in  the   same  way  that  others  had  done.  Participation  in  these  groups  appeared  to  have   contributed  to  the  understanding  that  some  of  the  participants  had  of  the  word  queer.    

Zeb,  in  a  similar  way  to  Avis,  was  focused  on  something  other  than  the  groups  at  

the  youth  center.  His  focus  was  on  sex  and  health,  along  with  job  readiness  skills.      

Two  of  the  members  of  this  cohort  did  not  use  the  term  queer  to  self-­‐identify.    

Each  of  those  who  did  use  the  term  queer  understood  the  term  differently.  While  there   were  similarities  in  three  of  the  participants’  understandings  of  the  term  queer  -­‐   stepping  outside  of  a  binary  -­‐  there  were  also  differences  in  what  those  binaries  were.   One  participant  defined  queer  to  mean  community.     Community  informed  queer  identity.    

    Community  support  can  manifest  in  many  different  ways.  For  the  participants  of  

this  study,  community  was  as  diverse  as  their  families  of  origin,  groups  of  friends,   special  teachers,  school  GSAs,  the  school  in  general,  and  the  LGBTQ  youth  center.    The   support  that  the  participants  received  from  these  sources  was  different  for  the  various   participants.  However,  community  alone  played  a  central  role  in  the  lives  of  all  the   participants.    

Some  participants  found  community  in  their  family  of  origin.  While  this  was  not  

the  first  place  that  was  sought  out  for  support  of  queer  identity,  it  was  important  to   several  of  the  participants.  Zeb  was  one  of  those  for  whom  it  was  important.  His  family   consisted  of  just  he  and  his  mother.    He  said,  “We  were  always  a  little,  close  family  and  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   107     we  kind  of  are  still  close.”  While  his  mother  struggled  at  first  to  accept  her  son’s  sexual   orientation,  she  eventually  was  supportive  of  his  gay  identity.      

Gerald’s  family  situation  was  similar  in  that  it  was  just  he  and  his  mother.  She  

too  was  initially  resistant  to  him  identifying  as  queer.  In  both  of  these  cases,  the  mother   played  a  central  role  in  the  family.    Both  mothers  were,  at  first,  not  accepting  of  their   son’s  identities,  but  subsequently  had  a  change  of  heart.  Of  his  situation,  Gerald  said,  “I   feel  like  she’s  a  lot  more  supportive  than  she  was  when  I  first  came  out.  That  time  was   weird.  And  she’s  a  lot  more  open  to  it.”        

In  contrast,  Marryl  had  the  support  of  their  family  from  the  time  they  came  out  

as  lesbian.  While  Marryl  spoke  of  family,  this  support  was  spoken  of  more  indirectly   and  was  not  featured  in  their  coming  out  story  as  it  was  for  Zeb,  Gerald,  or  Tabatha.    

Tabatha  described  another  dimension  of  family.  While  she  spoke  extensively  

about  her  family,  she  was  still  reluctant  to  come  out  to  them  for  four  years  after  she   came  out  in  school.  She  said  about  her  mother:   She  asked  me  if  I  was  gay  and  it  came  out  of  nowhere,  her  asking  me,  and  I  was   so  isolated  from  my  family  that  I  didn’t  like  them  in  any  of  my  business.  Also,  I’m   fourteen,  wasn’t  sure  how  she  was  going  to  handle  it…   Tabatha  thought  her  family  was  not  yet  ready  for  the  news  that  she  was  lesbian.   However,  four  years  later  she  did  think  that  they  were  ready.  She  related,  “And  so,  with   my  hand,  I  did  a  little  halo  thing  and  was  like  ‘gay.’  And  my  mom  was  like,  ‘hallelujah.’”   Thus,  Tabatha  gained  support  for  her  queer  identity  from  her  family      

For  some  of  the  participants,  the  support  of  the  community  of  friends  played  a  

key  role.  This  community  was  different  from  a  family  community  in  that  it  was  made  up  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   108     of  people  who  come  together  by  choice.    Zeb  and  Marryl  shared  that  they  had  support   from  friends  for  their  queer  identities.  Zeb  described  his  relationship  with  his  friends   as,  “They  were  really  supportive  and  they’re  still  supportive  of  me.”  Marryl  said,  “I  came   out  to  a  bunch  of  my  friends,  all  of  who  were  very  supportive.”  While  the  support  of   friends  was  important  for  some  of  the  participants,  it  did  not  appear  to  be  universally   experience  for  the  development  of  a  positive  queer  identity.      

The  LGBTQ  youth  center  was  another  place  of  community.  All  of  the  participants  

experienced  a  sense  of  community  at  the  youth  center.  For  some  of  the  participants,  the   sense  of  community  they  experienced  was  deeper  than  it  was  for  others.  For  Marryl  it   was  partially  this  sense  of  community  that  helped  them  understand  their  gender-­‐queer   identity.  They  said  of  the  youth  center:   I  didn’t  really  have  the  resources  to  figure  out  where  that  community  was,  so   when  I  started  seeing  my  therapist,  she  mentioned  the  [youth  center]  was   located  nearby  to  where  her  office  was.  So  I  just  decided  to  come  by  and  I’ve   been  coming  semi-­‐regularly  ever  since.   The  strength  Marryl  derived  from  this  sense  of  community  enabled  them  to  fully   explore  and  inform  their  queer  identity.  They  said,  “So  there  was  several  people  at  the   youth  center  who,  and  my  therapist  for  instance,  who  were  there  for  the  process  of  me   figuring  out  my  gender-­‐queer  identity.”      

Like  Marryl,  Tabatha  felt  that,  with  the  support  of  those  around  her  at  the  center,  

she  was  able  to  express  her  queer  identity  openly.  She  said,  “I’m  so  lucky  and  the  people   here  are  at  the  youth  center,  like  Bobbi,  are  always  so  encouraging.”  The  youth  center   gave  her  a  voice  and  support  for  her  queer  identity.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   109       Kevin,  like  Marryl,  through  the  use  of  the  many  resources  at  the  center,  was  able   to  develop  a  more  complex  understanding  of  himself  as  queer.  He  said:   It’s  a  space  where  everyone  can  feel  safe,  but  also  I  like  the  fact  that  there  are  fun   things  to  do  like  dancing  and  theater  and  cooking,  but  there  are  also  more  like   life  skills  related  things,  such  as  like  job  help  and  resume  and  FASFA  help  and   things  like  that.   Kevin  was  able  to  explore  his  queer  identity  by  taking  advantage  of  all  of  the  different   types  of  groups  the  youth  center  had  to  offer.   These  four  participants  had  taken  advantage  of  the  supports  of  the  youth  center   as  a  community.  On  the  other  hand,  Avis  and  Zeb  were  more  limited  in  their  reliance  on   the  youth  center  as  community.  Avis  limited  his  exposure  primarily  to  career   exploration  and  help  with  scholarships.  Although  Zeb  appreciated  the  discussions  that   occurred  at  the  youth  center,  he  was  focused  on  sex,  health  and  job  readiness  skills.  Zeb   and  Avis  both  experienced  a  sense  of  community  at  the  center,  but  neither  of  them  took   advantage  of  the  groups  and  activities  that  seemed  to  help  the  other  participants   develop  a  deeper  sense  of  community.    

School  and  teachers  are  another  aspect  through  which  the  participants  

experienced  a  sense  of  community.  Avis  had  experienced  community  at  school  in  two   different  ways.  He  had  a  teacher  who  supported  him,  “His  name  was  Mr.  F,  he  himself  is   gay.  He  was  a  comfort  to  me  and  sometimes  when  I  was  just  feeling  bad.”  Avis  also   experienced  community  at  school  in  general.  He  said,  “Um,  it  was  very  comfortable   atmosphere.  At  times  I  miss  it  really.”  While  it  is  difficult  to  say  whether  his  general  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   110     sense  of  community  helped  him  develop  his  queer  identity,  his  teachers  appear  to  have   helped  him  with  his  queer  identity.   Gerald  also  experienced  a  sense  of  community  at  school.  Like  Avis  this  sense  of   community  was  most  clearly  experienced  by  Gerald  through  his  association  with  an   openly  gay  teacher.  He  said,  “Mr.  K  was  an  open  gay  male  in  high  school…  I  don’t  know,   he  was  also  the  GSA  facilitator.”  Mr.  K  played  several  roles  in  Gerald’s  life.  He  was  a   conduit  to  the  school  community  and,  at  the  same  time,  helped  Gerald  to  develop  his   queer  identity.    

Tabatha  too  speaks  of  a  sense  of  community  at  school.  She  said:   I  had  a  lot  of  friends  in  my  clothing  class  that  I  was  in.  And  by  the  time  I  was  a   senior,  I  was  in  clothing  three  times  a  day,  listening  to  the  radio,  talking,  sewing,   and  having  a  blast  with  my  friends.

 Tabatha  had  the  support  of  her  school  community  for  her  queer  identity.  As  apposed  to   the  support  that  Avis  and  Zeb  received  from  teachers  at  school,  Tabatha’s  support  was   primarily  from  friends.    The  levels  and  types  of  supports  provided  by  different  communities  influence   one’s  queer  identity  development.  The  community  that  is  a  nuclear  family  plays  an   important  role  in  several  of  the  participants’  lives.  Where  family  is  supportive,  a   stronger  queer  identity  develops.  The  community  that  is  a  friend  or  group  of  friends  is   another  place  of  support  identified  by  several  of  the  participants.  Again,  this  community   of  friends  positively  impacts  the  development  of  queer  identity.  The  community  that   was  found  at  the  youth  center  supported  an  environment  in  which  all  of  the  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   111     participants  were  able  to  explore  and  develop  their  queer  identities,  although  each  to  a   varying  degree.    

   

Support  at  school  for  being  queer  relates  to  strengthening  of  one’s   mathematical  identity.   Receiving  positive  support  for  being  queer  at  school  was  a  factor  in  a  strong  

mathematical  or  academic  identity  for  the  participants  in  this  study.  This  support  can   come  from  any  of  a  number  of  places  or  individuals.  It  may  be  support  from  friends  at   school,  such  as  Zeb,  Marryl  and  Gerald  experienced.  It  may  be  the  support  of  a  GSA,  as   was  the  experience  of  Gerald  and  Marryl.  It  may  also  be  the  support  of  an  openly  gay   teacher,  such  as  Avis  and  Gerald  experienced.  Or,  it  may  be  the  support  of  teachers  in   general,  as  Tabatha  reported.    

Zeb  and  Gerald  both  told  of  having  supportive  friends,  support  that  started  in  

high  school  and  continued  into  college.  Zeb  stated,  “Like  they  kind  of  knew.  And  some  of   them  were  like  ‘okay,  what  do  you  want  me  to  do  about  it?’  That  was  it.  They  were   really  supportive  and  they’re  still  supportive  of  me.”  These  school  friends  were   supportive  of  Zeb’s  gay  identity.  Based  on  the  support  of  his  friends,  Zeb  felt   comfortable  enough  to  go  to  the  GSA  meeting  where  he  learned  of  the  youth  center  and   the  academic  assistance  they  offered.  He  then  accessed  assistance  for  his  mathematics,   which  in  turn  helped  him  develop  a  more  robust  mathematical  identity.  As  he  said,  “I   went  to  the  youth  center  for  their  education  resources…”  In  the  end  he  was  empowered   by  his  friends’  support  of  his  gay  identity  to  get  the  help  that  he  needed  to  strengthen   his  mathematical  identity.    

Gerald  also  had  support  from  friends.  Gerald  said:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   112     She  [Liza]  was  the  first  person  I  came  out  to  and,  I  don’t  know,  it  was  no  big  deal   to  her.  I  think,  also,  she  identifies  as  lesbian,  so…  She  was  a  part  of  the  GSA,  we   had  a  lot  of  classes  together…I  feel  like,  especially  with  a  lot  of  people  I  hang  out   with,  they  make  a  big  deal  out  of  me  going  to  school  and  stuff  -­‐-­‐  especially  my   friend,  Liza.  …  So  she’s  like,  “Oh  I  can’t  believe  you’re  still  in  school.  You’re  doing   such  a  good  job.”   Gerald  got  support  at  school  for  his  queer  identity  as  well  as  his  academic  identity  from   his  friend  Liza.        

The  GSA  was  also  a  support  for  Gerald,  as  was  Mr.  K,  the  GSA  advisor  who  was  an  

openly  gay,  mathematics  teacher.  Gerald  had  multiple  supports  from  school  for  his   queer  identity:  his  friends,  the  GSA  and  Mr.  K.  Mr.  K  also  tutored  Gerald,  even  when   Gerald  was  not  his  student.  This  support  directly  affected  Gerald’s  mathematical   identity.  Gerald  said,  “I’ve  had  a  pretty  good  math  career  throughout  my  life,  but  in  high   school  I  really  had  a  good  math  teacher.  His  name  was  Mr.  K  and  he  really  helped  me  a   lot.”  Gerald’s  friend  Liza  supported  his  academic  identity  as  well  as  his  queer  identity.   Mr.  K,  who  supported  Gerald’s  queer  identity  through  his  role  as  GSA  advisor,  also   supported  Gerald’s  positive  mathematical  identity.  With  multiple  supports  for  a  strong   queer  identity,  Gerald  was  able  to  take  advantage  of  support  for  both  his  academic  and   mathematical  identities.      

Like  Gerald,  Marryl  also  attended  a  GSA,  which  gave  them  support  for  their  

queer  identity.  They  stated:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   113     I  was  fifteen  and  it  was  in  my  freshman  year  when  one  of  my  friends  dragged  me   to  a  GSA  meeting  and  I  didn’t  think  anything  of  it.  And  it  was  after  walking  out  of   the  GSA  meeting  that  I  was  like  “oh  god  damn  it,  I  might  be  gay.”  And  then  it  was   over  the  course  of  several  months,  and  the  [start  of]  my  sophomore  [year]  I   actually  worked  out…  At  the  time  I  identified  as  a  lesbian  because  I  didn’t  know   anything  about  gender  identity  at  the  time.   The  GSA  was  a  support  for  Marryl’s  queer  identity.  Participation  in  the  GSA  helped  them   come  out  to  friends  and  parents,  all  of  whom  where  supportive  of  their  queer  identity.   By  coming  out  to  their  parents,  Marryl  was  able  to  stay  connected  to  a  strong  source  of   Marryl’s  mathematical  identity  -­‐  family.  They  said,  “I  came  out  to  my  parents  and  they   were  pretty  cool  about  it,  too,  just  that  I  was  still  their  kid  so  they  were  still  pretty  good   about  it.”  Marryl  went  on  to  state:   I  definitely  attribute  my  understanding  of  mathematics,  sort  of  like  in  the  duality   of  nature  and  nurture  that  I  think  there’s  definitely  something  going  on  in  terms   of  how  my  brain  is  set  up.  It’s  like  both  of  my  parents  are  very  mathematical.  My   brother  is  very  mathematical.  I’m  definitely  going  to  have  something  in  me  that’s   sort  of  processes  in  a  mathematical  way,  even  if  I  don’t  have  a  particular  career   interest  in  working  with  theoretical  mathematics  or  engineering  or  accounting.    A  strong  queer  identity  creates  a  personal  environment  that  is  conducive  to   understanding  and  absorbing  other  information  and  knowledge.  With  a  strong  queer   identity  as  a  base  the  participants  were  able  to  strengthen  their  mathematical  identities   because  they  were  able  to  process  additional  information.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   114       Like  Gerald,  Avis  had  the  support  of  an  openly  gay  teacher,  Mr.  F.  Mr.  F  was  a   biology  teacher  about  whom  Avis  said,  “He  was  a  comfort  to  me  and  sometimes  when  I   was  just  feeling  bad.”  Mr.  F  was  a  support  for  Avis,  providing  him  with  the  emotional   support  he  needed  for  his  queer  identity.  This  support  for  his  queer  identity  provided   Avis  with  the  emotional  space  he  needed  in  which  to  excel  in  his  academics.  Because  he   did  not  receive  support  at  home  for  either  his  academic  identity  or  for  his  queer   identity,  the  supports  that  he  received  from  his  teacher  provided  the  assistance  he   needed  for  his  bisexual,  academic  and  mathematical  identities.          

With  regard  to  her  teachers,  the  support  that  Tabatha  received  was  less  direct  

than  that  which  was  received  by  either  Avis  or  Gerald.  While  she  received  the  support   of  teachers,  it  was  not  directly  for  her  queer  identity.  The  fact  that  the  only  teachers  she   accepted  support  in  mathematics  from  were  female  does  seem  related  to  Tabatha’s   queer  identity.  She  said,  “I  really  started  noticing  a  pattern  that  I  do  very  well  when  I   have  a  female-­‐identified  teacher  and,  when  they’re  male-­‐identified  I  didn’t  pay   attention.”  It  is  unclear  as  to  why  Tabatha  performed  better  and  accepted  support  from   female-­‐identified  teachers,  but  not  male-­‐identified  teachers.  In  any  case,  the  support   that  Tabatha  received  from  these  female  teachers  contributed  to  her  development  of  a   strong  mathematical  identity.    

Unlike  the  others,  Kevin  did  not  appear  to  receive  any  support  at  school  for  his  

queer  identity.  Although  he  was  out  to  his  fellow  students,  to  them  it  was  not  an  issue.   His  teachers  did  not  seem  to  know  that  he  was  queer.  Both  situations  resulted  in  a   circumstance  in  which  he  did  not  report  any  support  for  his  queer  identity.    He  said  of   the  experience:  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   115     Throughout  my  high  school  years,  yes.  I  feel  like  my  grades  dropped  and  I  kind   of  didn’t  get  to  do  things  that  high  schoolers  and  teenagers  were  doing  so  I  never   got  to  really  hang  out  with  friends  and  I  never  got  to  play  sports  after  school,   and,  you  know,  like  be  in  clubs  or  be  in  theater  or  just  things  like  that,  because  it   was  always  something  going  wrong  where  I  had  to  leave  school  or  not  be  in   school  for  you  know  like  a  certain  period  of  time.  So  I  feel  like  I  missed  out  on  a   lot  of  extracurricular  activities.   Kevin  did  not  discuss  any  support  for  his  queer  identity,  however  he  did  report  that  his   mathematical  identity  suffered.  His  mathematical  identity  suffered  in  that  he  did  not   always  ask  questions  for  fear  of  being  seen  as  the  pushy  gay  kid  in  the  mathematics   classroom.  He  said:   I  was  kind  of  like  intimidated  to  really  ask  questions  about  certain  things,  …   because  I  didn’t  want  the  class  to  feel  like  “Oh,  that  gay  kid  is  talking  again,”  “that   gay  kid  is  asking  questions  again”.  So,  I  didn’t  want  it  to  feel  like  that.  This  appears  related  to  a  lack  of  support  for  his  queer  identity,  as  his  queer  identity   was  not  strong  enough  to  withstand  any  possible  negative  repercussions  in  the   mathematics  classroom.    

The  support  that  the  participants  received  at  school  for  their  queer  identities  

was  related  to  their  academic  and  mathematical  identities.  Multiple  supports  were   available  through  school,  whether  it  was  friends,  gay  identified  teachers,  or  a  GSA.   However,  it  does  not  appear  necessary  to  have  multiple  sources  of  support  for  a  queer   identity  to  have  support  for  a  strong  academic  or  mathematical  identity.  Some  of  the   participants  reported  having  multiple  sources  of  support  through  school.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   116       Zeb  and  Marryl  had  the  support  of  friends  for  their  queer  identities  and  this   translated  into  support  for  their  academic  identities.  Avis  and  Gerald  had  the  support  of   an  openly  gay  teacher,  who  supported  their  queer  identities;  these  teachers  were  also   able  to  support  their  mathematical  identities.  Marryl  and  Gerald  had  the  support  of  a   GSA  for  their  queer  identities,  and  this  support  related  to  support  for  their   mathematical  identities.    Unlike  the  others,  Tabatha  accepted  support  from  teachers   that  was  a  result  of  her  queer  identity  and  this  support  was  for  a  stronger  mathematical   identity.  Kevin  reported  having  no  school  support  for  his  queer  identity,  also  reported   being  afraid  of  being  seen  as  a  pushy  gay  kid  in  school.  Support  from  school  for  one’s   queer  identity  was  varied  in  how  it  was  delivered,  but  seems  to  be  related  to  academic   and  mathematical  identities.   Conclusion    

Three  findings  emerged  from  the  data.  The  first  was  that  all  of  the  participants  

who  identified  as  queer  understood  what  it  meant  for  them  to  possess  a  queer  identity   in  one  of  two  ways,  as  stepping  outside  of  the  binary  or  as  community.  This   demonstrated  the  wide  scope  of  potential  understandings  of  the  term  queer.  The   second  finding  was  that  the  community  support  that  the  participants  found  reinforced   their  queer  identities.  In  this  finding,  the  way  that  the  participants  understood   community  was  explored  along  with  the  impact  that  having  a  sense  of  community  had   on  their  queer  identities.  In  the  final  finding,  support  through  school  and  its  impact  on   the  participants’  queer  identities  and  mathematical  identities  were  examined.    Support   at  school  for  a  participant’s  queer  identity  was  related  to  their  mathematical  or   academic  identity.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Chapter  5:  Conclusion  

117    

  Introduction    

 This  study  sought  to  answer  the  question:  In  what  manner  is  queer  identity  and  

mathematical  identity  expressed  simultaneously  for  individuals  self-­‐identified  as  LGBTQ?   This  question  was  explored  using  a  phenomenological  methodology.    Three  findings   emerged  from  the  data:  1)  participants  who  identified  as  queer  understood  what  it   meant  for  them  to  possess  a  queer  identity  in  one  of  two  ways,  as  stepping  outside  of   the  binary  or  as  community;  2)  the  community  support  that  the  participants  found   reinforced  their  queer  identities;  and,  3)  support  at  school  for  a  participant’s  queer   identity  was  related  to  their  mathematical  or  academic  identity.      

In  this  chapter,  I  address  the  research  question  and  examine  the  intersection  of  

queer  identity  and  mathematical  identity.    The  findings  are  discussed  in  relation  to  the   literature  and  theoretical  framework.    Conclusions  drawn  from  the  study’s  findings  will   serve  as  a  guide  to  recommendations  for  future  research.  

 

Discussion    

In  this  section,  the  literature  will  be  discussed  as  it  relates  to  the  findings.  The  

literature  as  it  pertains  to  queer  identity,  supports  for  queer  identities  and  intersections   and  educational  disparities  will  be  considered.    

   

Queer  identity.     For  the  purposes  of  this  study,  “queer”  has  been  defined  to  include  three  

dimensions  that  can,  at  times,  be  used  interchangeably.  Queer  identity  may  refer  to  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   someone  who  is  lesbian,  gay,  bisexual,  or  transgender  (LGBT).  When  used  in  this  

118    

manner,  queer  is  a  shorthand  way  to  categorize  all  four  labels.  Queer  identity  can  also   be  used  as  a  term  referring  to  an  individual’s  understanding  of  self  across  the  spectrum   of  non-­‐heteronormative  sexual  identity  (Wilchens,  1997).  The  final  dimension  of  queer   identity  can  reflect  a  political  position.  It  is  a  word  choice  that  has  been  reclaimed  from   the  past  when  it  was  often  used  negatively  when  referring  to  a  particular  group  of   individuals  (Kumashiro,  2002).  Among  the  six  participants,  all  three  dimensions  of  the   definition  are  applicable.    

Four  of  the  six  participants  used  the  word  queer  to  define  themselves.  Of  these  

four,  three  used  a  dimension  of  the  definition  as  it  was  explained  above.  Marryl,  Kevin   and  Tabatha  all  speak  of  queer  as  being  outside  of  the  binary  (Wilchins,  1997).    It  is   interesting  to  note  that  while  they  all  speak  of  gender-­‐binary,  they  do  not  all  refer  to  the   same  binary.  In  Wilchens’  understanding  of  queer  as  anything  non-­‐heteronormative,   this  is  not  problematic.  In  fact,  it  strengthens  Wilchens’  theory  of  queer  because  it   shows  the  range  that  queer  can  encompass.    

In  describing  another  dimension  of  queer,  Kumashiro  (2002)  speaks  of  it  as  a  

reclaimed  word  that  has  political  implications.  Marryl  directly  stated  that  queer  for   them  was  a  political  statement.  They  said,  “Queer,  for  me,  is  part  social  identity,  part   political  identity.”  Other  participants  used  this  understanding  of  queer  indirectly.  While   they  did  not  make  the  statement  in  the  same  way  that  Marryl  did,  it  could  be  argued   that  Tabatha  and  Kevin,  by  claiming  the  label  “queer”  for  themselves,  understand  queer   as  political.  This  understanding  of  queer  also  affirms  the  idea  that  queer  is  a  discourse  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   119     based  identity  (Gee,  1999).  A  discourse  based  identity  is  what  one  says  it  is.  It  is  based   upon  the  way  that  one  describes  the  identity.    

 

Gerald  looked  at  queer  with  a  completely  different  perspective.  He  considered  

queer  to  be  about  the  community.  This  was  what  Gerald  was  referring  to  when  he   equated  queer  with  community.  This  understanding  of  queer  could  be  argued  to  expand   the  dimensions  of  the  understanding  of  the  word.  It  may  be  however,  that  Gerald  sees   queer  as  an  affinity  identity  (Gee,  1999).  Affinity  identities  are  based  on  belonging  to  a   group,  and  it  appears  that  this  is  how  Gerald  understands  queer,  to  be  part  of  a  group.   This  would  be  similar  to  Avis  and  Gerald  who  define  themselves  as  bisexual  and  gay.  It   has  been  argued  that  bisexual  and  gay  are  affinity  identities  rather  than  discourse   identities.      

 

Supports  for  a  positive  queer  identity.   There  appeared  to  be  several  factors  that  influenced  the  development  of  a  

positive  queer  identity  (Blackburn,  2004;  Blackburn  &  McCready,  2009;  GLSEN,  2011;   Lee,  2002).  These  included  attending  a  school  with  a  GSA,  having  a  safe  and  supportive   school  environment,  having  out  of  school  support  such  as  an  LGBTQ  youth  center,   having  supportive  friends,  and  having  family  support.   All  of  the  participants  had  some  type  of  community  support  which,  in  turn,   afforded  them  the  opportunity  to  develop  a  more  positive  queer  identity.  Blackburn   (2004)  spoke  to  the  need  to  have  the  support  from  an  organization  such  as  an  LGBTQ   youth  center.  She  reported  that  having  this  type  of  support  for  a  positive  queer  identity   provided  agency  for  the  youth  in  her  study.  All  of  the  participants  in  my  study  reported   finding  a  sense  of  community  at  the  youth  center.  Each  seemed  to  gain  support  for  their  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   120     queer  identities  as  well.  This  would  support  the  contention  by  Blackburn  that  these   types  of  youth  centers  have  a  positive  impact  on  the  youth  that  they  serve.  The  fact  that   all  of    the  participants  found  support  at  the  center  speaks  to  the  nature  of  the  center  as   serving  a  wide  variety  of  needs  of  a  diverse  population.     Schools  are  often  hostile  places  for  queer  identified  students  (GLSEN,  2011).   Students  report  hearing  homophobic  remarks  at  alarming  rates,  with  many  teachers   ignoring  the  harrassment  of  queer  students.  Most  schools  do  not  have  a  GSA  or  any   other  group  that  is  supportive  of  queer  students.  Five  percent  of  the  queer  students   surveyed  by  GLSEN  could  not  name  one  supportive  teacher  in  their  school.  This  lack  of   support  for  queer  students  is  problematic,  at  best,  and  dangerous,  at  worst,  with  38.3%   reporting  being  physically  harassed  and  18.3%  reporting  being  physically  assaulted  at   school  in  the  past  year  because  of  their  sexual  orientation  (GLSEN,  2011,  p.25).   Some  schools  offer  emotional  support  to  students  through  GSAs,  and  friends,  as   well  as  various  types  of  teacher  support.  Teacher  support  differs  from  the  other   supports  in  that  it  may  be  emotional  and/or  academic  in  nature.  This  study  supports   GLSEN’s  (2011)  finding  that  having  an  openly  LGBTQ  teacher,  or  a  GSA  at  one’s  school   (GLSEN,  2011;  Lee,  2002),  increases  academic  success.  This  study  supports  GLSEN’s   and  Lee’s  findings,  and  takes  them  further  by  adding  to  the  literature  by  finding  that   mathematical  identity  may  be  strengthened  when  queer  identity  is  supported.      Blackburn  and  McCready  (2009)  surveyed  the  literature  on  the  topic  of   supports  for  queer  youth  and  arrived  at  several  conclusions.  They  found  that  not  only   were  out  of  school  supports,  such  as  LGBTQ  youth  centers  helpful,  but  also  that  GSAs   can  be  a  critical  link  for  youth.  The  conclusion  that  GSAs  support  the  development  of  a  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   121     positive  queer  identity  has  been  found  in  other  work  as  well  (Lee,  2002).  Lee  goes   further  than  Blackburn  and  McCready  by  showing  that  not  only  does  a  GSA  promote  a   positive  queer  identity,  but  also  a  positive  academic  identity.  Lee  also  found  that  as  a   result  of  the  GSA,  the  youth  felt  better  about  themselves  and  about  school.  GLSEN   (2011)  concurred  with  Lee  about  these  findings.     Gerald  and  Marryl  both  had  the  advantage  of  a  GSA,  and  both  had  a  positive   queer  identity.  This  supports  the  work  of  Blackburn  and  McCready  (2009),  GLSEN   (2011)  and  Lee  (2002).  To  further  support  the  work  of  GLSEN  and  Lee,  both  Gerald  and   Marryl  had  strong  academic  identities.  My  study  supports  the  findings  of  GLSEN  and   Lee  that  having  a  GSA  supports  both  a  positive  queer  identity  and  a  positive  academic   identity.  My  study  also  extends  this  by  finding  that  a  positive  queer  identity  leads  to  a   stronger  mathematical  identity.   Another  area  that  the  literature  speaks  to  is  the  importance  of  gay-­‐identified   teachers  for  youth  who  are  queer  (GLSEN,  2011).  Avis  and  Gerald  both  told  of  having   gay-­‐identified  teachers  and  how  this  supported  their  queer  identities.  GLSEN  claimed   that  having  gay-­‐identified  teachers  not  only  supports  queer  identity  but  also  is  linked  to   greater  achievement.  In  spite  of  the  positive  effects  of  having  an  out  teacher  only  41%   of  students  could  identify  an  out  teacher  in  their  school  (GLSEN,  2011  p.  49)  This  is   borne  out  by  both  Avis’  and  Gerald’s  mathematical  identities  and  performance  in   mathematics.      

Zeb  and  Gerald  both  told  of  having  supportive  friends,  support  that  started  in  

high  school  and  continued  into  college.  This  support  of  friends  was  in  the  form  of   encouragement  to  do  well  in  school.  Blackburn  and  McCready  (2009)  spoke  of  this  type  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   122     of  support  and  showed  that  it  leads  to  a  stronger  queer  identity.  While  Blackburn  and   McCready  did  not  find  that  the  support  went  any  further,  I  contend  that  this  support   assists  students  in  developing  their  academic  and  mathematical  identities.  We  saw  this   most  clearly  with  Gerald.  He  stated:     She  [Liza]  was  the  first  person  I  came  out  to  and,  I  don’t  know,  it  was  no  big  deal   to  her.  I  think,  also,  she  identifies  as  lesbian,  so…  She  was  a  part  of  the  GSA,  we   had  a  lot  of  classes  together…I  feel  like,  especially  with  a  lot  of  people  I  hang  out   with,  they  make  a  big  deal  out  of  me  going  to  school  and  stuff  -­‐-­‐  especially  my   friend,  Liza.  …  So  she’s  like,  “Oh  I  can’t  believe  you’re  still  in  school.  You’re  doing   such  a  good  job.   This  support  helped  with  his  academic  identity  development.  This  is  an  example  of  the   extension  of  academic  identity  based  on  support  for  queer  identity.    

The  literature  concerning  family  support  of  a  queer  identity  is  fairly  well  

developed  (D'Augelli,  Grossman,  &  Starks,  2005;  Elze,  2003;  Pearson  &  Wilkinson,   2013;  Ryan,  2010;  Sadowski,  2010).  Most  of  the  discussion  of  family  support  centered   around  acceptance  or  rejection  of  the  youth  and  high-­‐risk  behavior  on  the  part  of  the   youth.  There  was  a  small  amount  of  work  that  mentioned  education  and  achievement.   (Ryan,  2010;  Sadowski,  2010;  Elze,  2003).  None  of  the  studies  to  date  concentrated  on   this  critical  support  for  education.  Ryan’s  work  tangentially  make  connections  between   at-­‐risk  behaviors,  such  as  drug  use,  running  away  and  high-­‐risk  sex  and  education.  The   work  of  Ryan  also  showed  an  increasing  amount  of  support  on  the  part  of  parents  for   queer  identified  students.  Lastly,  Ryan’s  work  shows  that  for  a  large  portion  of  the  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   123     parents  who  reject  their  children,  the  parents  want  to  learn  new  ways  to  interact  with   their  children  once  they  find  out  that  rejection  increases  at-­‐risk  behaviors.    This  study   seems  to  have  confirmed  the  work  of  Ryan  and  Sadowski  that  support  for  a  youth’s   queer  identity  by  their  parents  has  a  positive  impact  on  their  academics.  In  my  study,   four  of  the  six  participants  spoke  to  this  issue.  Those  four  all  described  support  for  their   queer  identities  from  their  families.  Of  the  two  who  did  not,  one  was  rejected  by  his   mother  and  the  other  had  not  come  out  to  his  parents.    

   

Identity  and  educational  disparities.   Black  and  colleagues  (2010)  wrote  of  a  concept  they  referred  to  as  a  leading  

identity.  It  is  the  idea  that  there  is  one  identity  that  subordinates  other  social  identities.   Queer  identity  is  one  such  leading  identity.  Possessing  a  queer  identity  causes  other   social  identities,  such  as  a  mathematical  identity,  to  take  on  lesser  importance.   However,  if  there  is  not  sufficient  support  for  the  leading  identity  the  other  identities   are  weakened.  In  fact,  if  a  leading  identity  has  enough  support,  there  is  greater   achievement  in  the  area  of  other  social  identities.     This  study  found  that  support  for  a  queer  identity  might  lead  to  greater   academic  and  mathematical  achievement.  A  leading  identity  seems  to  be  operating  in   this  study  because  for  Kevin,  who  did  not  have  support  for  his  queer  identity  before  he   discovered  the  youth  center.  His  academic  and  mathematical  identities  suffered  when   he  was  not  receiving  support  for  his  queer  identity  in  high  school.  When  he  received   support  for  his  queer  identity  through  the  youth  center,  his  academic  and  mathematical   identity  became  strong  enough  that  he  was  able  to  continue  his  education  and  pursue   higher  education.  This  study  seems  to  support  the  idea  of  a  leading  identity.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   124     Kevin  may  illustrate  a  finding  that  Venzant,  Chambers  and  McCready  (2011)   discovered  when  they  studied  racial  identity  and  achievement.  They  found  that  black   students  felt  marginalized  and  performed  at  lower  levels  when  they  had  multiple   stigmatizing  identities.  The  stigmatizing  identities  were  black  and  queer,  as  was  the   case  with  Kevin,  Avis  and  Gerald.  Avis  and  Gerald  did  not  experience  lower  academic   achievement;  to  the  contrary,  they  excelled.  Kevin’s  performance,  on  the  other  hand,   was  poor.  He  spoke  of  dropping  grades  and  missing  large  amounts  of  time  at  school.  His   homelessness  most  likely  played  a  part  in  his  poor  performance.    As  a  result  of  Kevin’s   homelessness  he  was  also  unable  to  get  support  for  his  queer  identity.  Conversely,  Avis   and  Gerald  had  support  for  their  queer  identities  at  school  and  they  excelled.  The   difference  in  the  performance  outcomes  may  be  a  result  of  the  level  of  support  that  each   received  for  their  queer  identities.    Based  on  this  finding  it  may  be  true  that  support  for  a  queer  identity  may  be  a   mitigating  factor  for  students  with  multiple  stigmatizing  identities.  It  may  be  that   support  for  one’s  queer  identity  counteracts  upon  this  identity  to  cause  it  to  no  longer   be  a  stigmatizing  identity.  This  has  implications  for  this  study  because  it  would  imply   that  one  way  to  have  a  stronger  mathematical  identity,  and  thus  higher  mathematical   achievement  would  be  to  support  one’s  queer  identity.  This  would  extend  the  work  by   Venzant  Chambers  and  McCready  and  deserves  further  research.   Implications    

This  study  has  implications  in  the  areas  of  theory  and  practice.  Educational  

theory  is  expanded  to  begin  to  include  a  discussion  of  queer  identified  students.  The  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   125     area  of  practice  is  impacted  as  teachers,  GSAs  and  LGBTQ  youth  centers  can  reflect   upon  their  work  based  on  the  findings.   Theory.      

The  findings  of  this  study  may  have  implications  in  the  area  of  identity  theory,  

namely  in  the  area  of  a  leading  identity  (Black,  Wiliams,  Hernandez-­‐Martinez,  Davis,   Pamaka,  &  Wake,  2010).  This  study  indicates  the  primacy  of  queer  identity  in  the   identities  explored.  Because  queer  identity  is  a  leading  identity,  support  for  academic   and  mathematical  identity  are  generally  subordinate  to  a  queer  identity.  There  appears   to  be  a  relationship  between  support  for  one’s  queer  identity  in  school-­‐related   communities  (e.g.  friends,  teachers,  GSAs)  and  the  strength  of  one’s  mathematical   identity.  This  relationship  manifests  when  someone  who  identifies  as  queer  receives   support  for  their  queer  identity.  If  this  support  is  from  a  school-­‐based  community,  such   as  teachers  or  a  GSA,  there  seems  to  be  a  related  improvement  in  the  students’   mathematical  identities.   Research  into  this  theory  is  important  because  possession  of  a  positive   mathematical  identity  has  been  shown  to  correlate  to  higher  performance   mathematically  (Loustalet,  2009).  As  mathematics  is  a  gatekeeper  subject  (Stinson,   2004),  higher  performance  leads  to  greater  college  opportunities,  greater  career   opportunities,  and  greater  earnings  potential  over  a  lifetime.  

 

Practice.   Teachers,  particularly  mathematics  teachers,  can  take  away  several  important  

ideas  from  this  research.  Most  importantly  this  study  verified  earlier  research  that  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   126     showed  support  for  LGBTQ  identities  advises  academics  (GLSEN,  2011).  In  this  case  it   showed  that  there  is  a  relationship  between  support  from  schools  for  LGBTQ  identities   and  strong  mathematical  identities.  While  some  of  this  support  for  mathematical   identities  was  indirect,  nonetheless,  the  two  were  related.   Teachers  need  to  realize  that  they  must  create  safe  spaces  in  school  for  queer   identified  students.  Safe  spaces  do  not  happen  without  someone  purposefully  creating   them.  Not  only  must  the  classroom  be  free  of  name-­‐calling  and  bullying  based  on  queer   issues,  but  the  teacher  must  also  offer  support  to  students  for  who  they  are.  This  can  be   difficult  if  students  are  defensive  or  aloof  as  a  result  of  being  harassed  in  the  classroom.   This  is  particularly  true  in  the  mathematics  classroom  for  two  reasons.  First,   mathematics  is  often  thought  of  as  being  neutral  on  social  issues,  but  applied   mathematics  is  social  in  nature.  Thus,  mathematics  teachers  must  take  an  unequivocal   stand  for  acceptance  of  queer  students.  Second,  the  mathematics  classroom  is  often   thought  of  as  a  place  where  males  dominate.  By  using  the  research  of  Mendick  (2006),   mathematics  teachers  can  “queer”  the  mathematics  curriculum  and  soften  the  image  of   mathematics  of  that  as  absolutist  and  hard.     GLSEN  (2011)  reports  that  next  to  physical  education  class,  mathematics  has  the  lowest   percentage  of  students  reporting  positive  portrayals  of  queer  people.  This  is  significant   as  GLSEN  also  reports  that  positive  portrayals  of  queer  people  lead  to  greater  school   involvement  and  performance  in  the  classroom.  All  of  these  aspects  together  show  that   teachers  need  to  be  deliberate  and  purposeful  in  their  support  of  queer  identified   students.  Such  as  when  Avis  spoke  of  his  teacher,  “His name was Mr. F, he himself is gay.

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   127     He was a comfort to me”,  or  Gerald  and  Mr.  K,  ”Mr.  K  helped  me  out,  helped  me  become  a   good  math  student…  Mr.  K  was  an  open  gay  male  …he  was  also  the  GSA  facilitator.”   GSAs  are  another  area  in  which  this  research  has  implications.  This  research  also   verified  earlier  research  by  GLSEN  (2011)  and  Lee  (2002)  that  belonging  to  a  GSA  had   an  impact  not  only  on  one’s  queer  identity,  but  also  on  one’s  academic  and   mathematical  identities.  This  research  points  to  the  importance  of  groups,  such  as  a   GSA,  to  support  queer  identified  students.  In  other  words,  GSAs  work  to  provide  safe   spaces  for  students  to  gain  support  and  develop  positive  ideas  about  schooling.   The  following  are  all  ingredients  for  a  successful  GSA.  A  GSA  does  not  work  just   because  it  exists:  it  must  be  purposefully  planned.  The  advisor  to  a  GSA  must  be  open  to   having  sometimes  difficult  conversations  around  topics  of  safety  and  sexuality  that  they   may  not  be  trained  to  have.  It  is  important  for  the  students  to  have  a  space  where  they   feel  they  have  some  control  and  all  topics  are  available  for  discussion,  even  ones   considered  too  controversial  by  other  teachers.     GLSEN  (2011)  reports  that  queer  students  who  attend  schools  with  a  GSA  miss   less  school,  hear  fewer  homophobic  remarks,  and  earn  higher  grades.  These  positive   results  point  to  the  need  to  include  GSAs  as  part  of  an  open  and  accepting  environment   in  the  school.  Schools  must  include  queer  students  as  an  integral  part  of  the  student   body.  We,  as  a  society,  cannot  afford  to  waste  the  talent  of  our  queer  students,  and   schools  having  a  GSA  are  one  way  to  harness  that  talent  and  allow  it  to  flourish.   Lastly,  this  work  has  implications  for  places  such  as  the  LGBTQ  youth  center.  It   was  important  that  the  youth  center  be  a  place  of  support  for  not  only  participants’   queer  identities,  but  also  for  their  other  identities,  such  as  work  identities  and  academic  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   128     identities.  This  was  evident  in  the  inclusion  of  the    “Q”  (questioning)  in  the  LGBTQ.  A   strength  of  the  center  is  that  it  was  open  to  anyone  willing  to  be  open  and  accepting  of   diversity  and  inclusion.   As  with  GSAs,  the  youth  center  did  not  just  occur,  it  was  purposeful  and  planned.   It  was  the  diverse  array  of  services  offered  by  the  youth  center  that  initially  attracted   the  participants.  The  safe  and  welcoming  environment  that  the  staff  created  enabled   young  people  to  explore  their  identities,  without  criticism  or  judgment.  This  was  a   critical  element  of  the  center.   Too  often  marginalized  groups  in  our  society  are  silenced.  The  center  offered   marginalized  youth  a  voice.  The  center  gave  the  youth  a  voice  in  terms  of  what  type  of   programming  was  offered,  thereby  empowering  them.  The  most  important  thing  to   know  about  this  type  of  organization  is  that  it  works  (Blackburn,  2004)  to  empower   youth  to  do  better  in  life  and  in  school.   Limitations   This  study  is  limited  in  scope  for  two  reasons.  First,  because  of  the  number  of   study  participants  and  the  nature  of  the  methodology,  the  findings  are  not   generalizable.  A  qualitative  study,  with  its  small  non-­‐random  sample  is  by  the  very   nature  of  the  work  designed  to  explain  and  describe  rather  than  produce  generalizable   results.   Secondly,  this  work  is  limited  because  it  did  not  seek  to  quantify  educational   disparities.  This  work  sought  to  describe  the  experiences  of  the  participants  rather  than   seeking  to  count  how  often  various  phenomenon  occurred.  In  order  to  quantify   educational  disparities,  should  they  exist,  a  different  methodology  would  be  needed.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   129     This  research  allowed  for  description  of  a  particular  group  of  participants  and  thus   points  the  way  forward  for  further  research  in  the  area.  The  group  of  participants  was   homogeneous  in  age,  as  this  allowed  a  particular  subset  of  all  queer  people  to  be  better   understood.     Suggestions  for  Future  Research    

While  this  work  has  extended  the  literature  in  important  ways,  it  by  no  means  

explored  the  whole  of  the  question  of  what  is  happening  with  regard  to  LGBTQ  students   and  mathematics.  This  study  points  to  the  need  to  further  explore  the  state  of  education   with  regard  to  LGBTQ  students  and  mathematics.      

An  aspect  of  this  study  was  the  homogeneity  of  the  participants  in  that  all  of  

them  experienced  support  for  their  queer  identities  and,  as  a  consequence,  most  of   them  had  a  strengthened  mathematical  identity.  It  is  necessary  to  explore  the  status  of   students  who  do  not  have  support  for  their  identities.  We  must  explore  whether   students  who  do  not  have  supports  for  their  queer  identity  are  able  to  succeed  in   mathematics  as  well  as  the  students  who  do  have  supports.      

Along  with  the  need  to  explore  students  who  do  not  have  support  for  their  queer  

identity,  there  is  a  need  to  consider  students  who  are  being  harassed  for  possessing  a   queer  identity.  The  participants  in  this  study,  with  the  exception  of  Avis,  were  fortunate   enough  to  not  have  the  trauma  of  constant  harassment.  There  is  a  need  to  look  at  these   students  as  well  as  they  are  likely  not  receiving  support  for  their  queer  identity,  and   this  may  be  effecting  their  mathematics  education.    

Other  topics  for  future  research  include  how  widespread  is  support  for  queer  

identified  students  and  how  widespread  are  strong  mathematical  identities  for  queer  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   130     identified  students.  Other  questions  that  arise  from  this  research  include  examination   of  other  subject  areas  and  the  intersection  of  those  identities  with  students’  queer   identities.  The  question  remains  to  be  answered,  do  queer  identified  students  perform   at  the  same  level  as  their  peers  in  Mathematics,  English,  Science,  or  Social  Studies?      

This  study  has  identified  a  gap  in  the  literature,  and  research  needs  to  be  

continued  to  fill  that  gap.  The  educational  disparities  faced  by  LGBTQ  students  and  the   impact  of  queer  identity  on  mathematical  and  other  academic  identities  must  be   studied  so  that  any  disparities  can  be  addressed  and  resolved.  This  agenda  moves   forward  the  field  of  study,  but  is  not  exhaustive.  Much  opportunity  for  future  research   exists.      

   

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Bibliography  

131    

Alderson,  K.  G.  (2003).  The  ecological  model  of  gay  male  identity.  The  Canadian  Journal   of  Human  Sexuality  ,  12,  75-­‐85.     Almeida,  J.,  Johnson,  R.  M.,  Corliss,  H.  L.,  Molnar,  B.  E.,  &  Azrael,  D.  (2009).  Emotional   distress  among  LGBT  youth:  the  influence  of  perceived  discrimination  based  on   sexual  orientation.  Journal  of  Youth  Adolescence  ,  38,  1001-­‐1014.     Anderson,  R.  (2007).  Being  a  mathematics  learner:four  faces  of  identity.  The   Mathematics  Educator  ,  17  (1),  7-­‐14.     Ayalon,  H.  (1995).  Math  as  a  gatekeeper:  ethnic  and  gender  inequality  in  course  taking   in  the  sciences  in  Isreal.  Amerian  Journal  of  Education  ,  104  (1),  34-­‐56.     Barton,  A.  C.,  &  Yang,  K.  (2000).  The  culture  of  power  and  science  education:  learning   from  Miguel.  Journal  of  Research  in  Scienc  Teaching  ,  37  (8),  871-­‐889.     Bell,  D.  M.  (2010).  Development  of  identity.  In  R.  L.  Jackson  (Ed.),  Encyclopedia  of   Identity  (Vol.  1,  pp.  205-­‐209).  Thousand  Oaks,  CA:  Sage  Reference.     Berry,  R.  Q.  (2008).  Access  to  upper-­‐level  mathematics:  the  stories  of  successful  african   american  middle  school  boys.  Journal  for  Reaserach  in  Mathematics  Education  ,   39  (5),  464-­‐488.     Black,  L.,  Wiliams,  J.,  Hernandez-­‐Martinez,  P.,  Davis,  P.,  Pamaka,  M.,  &  Wake,  G.  (2010).   Developing  a  'leading  identity':  the  relationship  between  students'  mathematical   identities  and  their  career  and  higher  education  aspirations.  Educ  Stud  Math  ,  73,   55-­‐72.     Blackburn,  M.  V.  (2004).  Understanding  agency  beyond  school-­‐sanctioned  activities.   Theory  into  Practice  ,  43  (2),  102-­‐110.     Blackburn,  M.  V.,  &  Buckley,  J.  F.  (2005).  Teaching  queer-­‐inclusive  english  language  arts.   Journal  of  Adolescent  &  Adult  Literacy  ,  49  (3),  202-­‐212.     Blackburn,  M.  V.,  &  McCready,  L.  T.  (2009).  Voices  of  queer  youth  in  urban  schools:   possibilities  and  limitations.  Theory  into  Practice  ,  48,  222-­‐230.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   132     Blount,  J.  M.  (1996).  Manly  men  and  womanly  women:  deviance,  gender  role   polarizaation,  and  the  shift  in  women's  school  employment,  1900-­‐1976.  Harvard   Educational  Review  ,  66  (2),  318-­‐338.     Boaler,  J.  (2002).  The  develpment  of  disciplinary  relationships:knowledge,  practice,  and   identity  in  mathematics  classrooms.  For  The  Learning  of  Mathematics  ,  22  (1),   42-­‐47.   Boss,  P.,  Dahl,  C.,  &  Kaplan,  L.  (1996).  The  use  of  phenomenology  for  family  therapy   research:  the  search  for  meaning.  In  D.  H.  Sprenkle,  &  S.  M.  Moon  (Eds.),  Research   Methods  in  Family  Therapy  (pp.  83-­‐106).  New  York:  The  Guilford  Press.     Breshears,  D.  (2011).  Understanding  communication  between  lesbian  parents  and  their   children  regarding  outsider  discourse  about  family  identity.  Journal  of  GLBT   Family  Studies  ,  264-­‐284.     Britzman,  D.  (1998).  Lost  subjects,  contested  objects;  toward  a  psychoanalytic  inquiry  of   learning.  Albany,  New  York:  State  University  of  New  York  Press.     Burke,  P.  J.,  &  Stets,  J.  E.  (2009).  Identity  Theory.  New  York,  New  York:  Oxford  University   Press.     Carlone,  H.  B.,  &  Johnson,  A.  (2007).  Understaning  the  science  experiences  of  successful   women  of  color:  science  identity  as  an  analytic  lens.  Journal  of  Research  in   Science  Teaching  ,  44  (8),  1187-­‐1218.     Cass,  V.  C.  (1984).  Homosexual  identity  formation:  testing  a  theoretical  model.  The   Journal  of  Sex  Research  ,  20  (2),  143-­‐167.     Catsambis,  S.  (1994).  The  path  to  math:  gender  and  racial-­‐ethnic  differences  in   mathematics  participation  from  middle-­‐school  to  high-­‐school.  Sociology  of   Education  ,  67,  199-­‐215.     Chang,  M.  J.  (2011).  Battle  hymn  of  the  model  minority  myth.  Amerasian  Journal  ,  37  (2),   137-­‐143.     Chin,  P.  W.  (2002).  Asian  and  pacific  islander  women  scientists  and  engineers:  a   narrative  exploration  of  model  minority,  gender,  and  racial  stereotypes.  Journal   of  Research  in  Science  Teaching  ,  39  (4),  302-­‐323.     Cobb,  P.,  Gresalfi,  M.,  &  Hodge,  L.  (2009).  An  interpretive  scheme  for  analyzing  the   identities  that  students  develop  in  mathematics  classrooms.  Jorunal  for  Research   in  Mathematics  Education  ,  40  (1),  40-­‐68.     Cockburn,  J.  (2004,  June).  Interviewing  as  a  research  method.  The  Research  and   Development  Bulletin  ,  2  (3),  pp.  11-­‐16.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   133     Cohen,  G.  L.,  &  Garcia,  J.  (2005).  "I  am  us"  negative  stereotypes  as  collective  threat.   Journal  of  Personality  and  Social  Psychology  ,  89  (4),  566-­‐582.     Creswell,  J.  (1998).  Qualitative  Inquiry  and  Research  Design:  Choosing  Among  Five   Traditions.  Thousand  Oaks:  Sage  Publications.     D'Augelli,  A.  R.,  Grossman,  A.  H.,  &  Starks,  M.  (2005).  Parents'  awareness  of  lesbian,  gay,   bisexual  youths  sexual  orientation.  Journal  of  Marriage  and  Family  (67),  474-­‐ 482.     Elze,  D.  E.  (2003).  Gay,  lesbian,  and  bisexual  youths'  perception  of  their  high  school   environment  and  comfort  in  school.  Children  &  Schools  ,  25  (4),  225-­‐239.     Erikson,  E.  (1964,1980).  Childhood  and  Society.  New  York,  New  York:  W.  W.  Norton  and   Company.     Foucault,  M.  (1990).  The  history  of  sexuality,  volume  1:  an  introduction.  (R.  Hurley,   Trans.)  New  York:  Vintage  Books.     Gamoran,  A.,  Porter,  A.,  Smithson,  A.,  &  White,  P.  (1997).  Upgrading  high  school   mathematics  instruction:  improving  learning  opportunities  for  low-­‐acheiving,   low-­‐income  youth.  Educational  Evaluation  &  Policy  Analysis  ,  19  (4),  325-­‐338.     Gamson,  J.  (1995).  Must  identity  movements  self-­‐destruct?  A  queer  dilemma  *.  Social   Problems  ,  42  (3),  390-­‐407.     Gardner-­‐Kitt,  D.  (2005).  Black  Student  Achievement:  the  Influence  of  Racial  Identity,   Ethnic  Identity,  Perception  of  School  Climate  ,  and  Self-­‐Reported  Behavior.  The   Pennsyvania  State  University.     Gee,  J.  P.  (1999).  An  introduciton  to  discourse  analysis,  theory  and  method  (2  ed.).  New   York:  Routledge.     Gee,  J.  P.  (2000).  Identity  as  an  analytic  lens  for  research  in  education.  American   Educational  Research  Association  ,  25,  99-­‐125.     GLSEN.  (2011).  The  2011  School  Climate  Survey.  Gay  Lesbian  Straight  Educators   Network.  New  York:  GLSEN.     Goodnough,  K.  (2011).  Examining  the  long-­‐term  impact  of  collaborative  action  research   on  teacher  idenity  and  practice:  the  perceptions  of  K-­‐12  teachers.  Educational   Action  Research  ,  19  (1),  73-­‐86.     Guess,  C.  (1995).  Que(e)rying  lesbian  identity.  The  Journal  of  the  Midwestern  Modern   Language  Association  ,  28  (1),  13-­‐37.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   134     Haj-­‐Brossard.  (2003).  Language,  Identity  and  the  Achievement  Gap:  Comparing   Experiences  of  Afrian-­‐American  Students  in  a  French  Immersion  and  a  Regular   Education  Program.  Louisiana  State  University.     Heidegger,  M.  (1949).  Existance  and  being.  Chicago:  H.  Regnery  Co.     Heidegger,  M.  (1982).  The  Basic  Problems  of  Phenomenology.  (A.  Hofstadeter,  Trans.)   Indiana:  Indiana  University  Press.     Higgenbotham,  E.  B.  (1992).  African-­‐american  women's  history  and  the  metalanguage   of  race.  Signs:Journal  of  Women  in  Culture  and  Society  ,  17  (2),  251-­‐274.     Horn,  I.  S.  (2008).  Turnaround  students  in  high  school  mathematics:  constucting   identities  of  competence  through  mathematical  worlds.  Mathematical  Thinking   and  Learning  ,  10,  201-­‐239.     Jeffries,  S.  (1999).  Bisexual  politics:  a  superior  form  of  feminism?  Womens  Studies   International  Forum  ,  22  (3),  273-­‐285.     Kumashiro,  K.  K.  (1999).  Supplementing  normalcy  and  otherness:queer  asian  american   men  reflect  on  stereotypes,  identity,  and  oppression.  Qualitative  Studies  in   Education  ,  12  (5),  491-­‐508.     Kumashiro,  K.  K.  (2008).  The  seduction  of  common  sense:  how  the  right  has  framed  the   debate  on  america's  schools.  New  York,  New  York:  Teachers  College  Press.     Kumashiro,  K.  K.  (2002).  Troubling  education  queer  activism  and  antioppressive   pedagogy.  New  York,  New  York:  RoutledgeFalmer.     Ladson-­‐Billings,  G.  (2006,  October).  From  the  achievement  gap  to  the  education  debt:   understanding  achievement  in  U.S.  schools.  Educational  Researcher  ,  37  (7),  pp.   3-­‐12.     Ladson-­‐Billings,  G.  J.  (1999).  Preparing  teachers  for  diverse  student  populations:  a   critical  race  theory  perspective.  Review  of  Research  in  Education  ,  24,  211-­‐247.     Ladson-­‐Billings,  G.  J.  (1995).  Toward  a  theory  of  culturally  relavant  pedagogy.  American   Educational  Research  Journal  ,  32  (3),  465-­‐491.     Lawler,  S.  (2008).  Identity  Sociological  Perspectives.  Cambridge,  UK:  Polity  Press.     Lee,  C.  (2002).  The  impact  of  belonging  to  a  high  school  gay/straight  alliance.  High   School  Journal  ,  85  (3),  13.     Loustalet,  J.  (2009).  The  Influence  of  Math  Beleifs  on  Math  Success  in  Introductory  College   Math  Classes.  George  Fox  University.  

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   135       Mallett,  R.,  Mello,  Z.  R.,  Wagner,  D.  E.,  Worrell,  F.,  Burrow,  R.  N.,  &  Andretta,  J.  R.  (2011).   Do  I  belong?  it  depends  on  when  you  ask.  Cultural  Diversity  &  Ethnic  Minority   Psychology  ,  17  (4),  432-­‐436.     Martin,  D.  B.  (2006).  Mathematics  learning  and  participation  as  racialized  forms  of   experience:  african  american  parents  speak  on  the  struggle  for  mathematics   literacy.  Mathematical  Thinking  and  Learning  ,  8  (3),  197-­‐229.     Martin,  D.  B.  (2000).  Mathematics  Success  and  Failure  Among  African-­‐American  Youth.   Mahwah,  New  Jersey:  Lawrence  Erlbaum  Associates.     Martin,  D.  B.  (2009).  Researching  race  in  mathematics  education.  Teachers  College   Record  ,  111  (2),  295-­‐338.     Maxwell,  J.  A.  (1992).  Understanding  and  validity  in  qualitative  research.  Harvard   Educational  Review  ,  62  (3),  279-­‐291.     Ma'yan,  H.  D.  (2011).  A  white  queer  geek  at  school:  intersections  of  whiteness  and   queer  identity.  Journal  of  LGBT  Youth  ,  8,  84-­‐98.     McCready,  L.  (2004).  Some  challenges  facing  queer  youth  programs  in  urban  high   schools:Racial  segregation  and  de-­‐nomalizing  whiteness.  Journal  of  Gay  &   Lesbian  Issues  In  Education  ,  3  (1),  37.     McLain,  K.  E.  (2008).  Digging  Deeper:  an  Examination  of  Achievement  Gaps.  Capella   University.     Meijl,  T.  (2008).  Culture  and  identity  in  anthropology:  reflections  on  'unity'  and   'uncertainty'  in  the  dialogical  self.  International  Journal  for  Dialogical  Science  ,  3   (1),  165-­‐190.     Mendick,  H.  (2006).  Masculinities  in  Mathematics.  New  York,  New  York:  Open   University  Press.     Moustakas,  C.  (1994).  Phenomenological  Research  Methods.  Thousand  Oaks,  California:   Sage.     Munoz-­‐Plaza,  C.,  Quinn,  S.  C.,  &  Rounds,  K.  A.  (2002).  Lesbian,  gay,  bisexual,  and   transgendered  students:  perceived  support  in  the  high  school  environment.  High   School  Journal  ,  85  (4),  52-­‐63.     Nam,  Y.,  &  Huang,  J.  (2011).  Changing  roles  of  parental  economic  resources  in  children's   educational  attainment.  Social  Work  Research  ,  35  (4),  203-­‐213.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   136     Pearson,  J.,  &  Wilkinson,  L.  (2013).  Family  relationships  and  adolescent  well  being:  are   families  equally  protective  of  same-­‐sex  attracted  youth?  Journal  of  Youth  and   Adolescence  ,  32,  376-­‐393.     Reis,  E.  (2004).  Teaching  transgender  history,  identity,  and  politics.  Radical  History   Review  (88),  166-­‐177.     Rodriguez  Cazares,  L.  (2009).  A  comparative  study  of  average  and  high-­‐achieving  high   school  immigrant  and  non-­‐immigrant  students  of  Mexican  Heritage.  UMI   Dissertation  Publishing.     Ryan,  C.  (2010).  Engaging  famillies  to  support  lesbian,  gay,  bisexual,  and  transgender   youth.  The  Prevention  Researcher  ,  17  (4),  11-­‐13.     Sadowski,  M.  (2010,  April).  Beyond  gay-­‐straight  alliances.  The  Harvard  Education  Letter,   3-­‐5.     Sfard,  A.,  &  Prusak,  A.  (2005).  Telling  identities:  in  search  of  an  analytic  tool  for   investigating  learning  as  a  culturally  shaped  activity.  Educational  Researcher  ,  34   (4),  14-­‐22.     Singh,  A.  A.,  Hays,  D.  G.,  &  Watson,  L.  S.  (2011).  Strength  in  the  face  of  adversity:   resilience  strategies  of  transgender  individuals.  Journal  of  Counseling  &   Development  ,  89  (1),  20-­‐27.     Smith,  J.  A.,  Flowers,  P.,  &  Larkin,  M.  (2009).  Interpretative  Phenomenological  Analysis:   Theory,  Method  and  Research.  Thousand  Oaks:  SAGE  Publications  Ltd.     Snyder,  V.  L.,  &  Broadway,  F.  S.  (2004).  Queering  high  school  biology  textbooks.  Journal   of  Research  in  Science  Teaching  ,  41  (6),  617-­‐636.     Somers,  M.  R.  (1994).  The  narrative  constitution  of  identity:  A  relational  and  network   approach.  Theory  and  Society  ,  23  (5),  605-­‐649.     Spencer,  J.  A.  (2009).  Identity  at  the  crossroads:  Understanding  the  practices  and  forces   that  shape  African  American  success  and  struggle  in  mathematics.  In  D.  B.  Martin   (Ed.),  Mathematics  Teaching,  Learning,  and  Liveration  in  the  Lives  of  Black   Children  (pp.  200-­‐230).  New  York,  New  York:  Routledge.     Stinson,  D.  W.  (2004).  Mathematics  as  "gatekeeper"(?):  Three  theoretical  perspectives   that  aim  towards  empowering  all  children  with  a  key  to  the  gate.  Mathematics   Educator  ,  14  (1),  8-­‐18.     Stryker,  S.  (1980).  Symbolic  interactionism:  a  social  structural  version.   Benjamin/Cummings  Publishing  Company.    

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   137     U.S.  Department  of  Education.  (2012).  National  Center  for  Educational  Statistics.   Retrieved  March  15,  2012,  from  National  Assessment  of  Educational  Progress:   http://nces.ed.gov/nationsreportcard/     U.S.  Dept  of  Education.  (2012).  National  center  for  educational  statistics.  Retrieved   March  15,  2012,  from  Trends  of  International  Mathematics  and  Science  Study   (TIMSS):  http://nces.ed.gov/Timss/     Vagle,  M.  D.  (2009).  Validity  as  intended:'bursting  forth  toward'  bridling  in   phenomenological  research.  International  Journal  of  Qualitative  Studies  in   Education  ,  22  (5),  585-­‐605.   Van  Ausdale,  D.,  &  Feagin,  J.  R.  (2001).  Young  Children  learning  racial  and  ethnic  matters.   Lanham:  Rowman  &  Littlefield.     Van  Manen,  M.  (1990).  Ressearching  Lived  Experiences:  Human  Science  for  an  Action   Sensitive  Pedagogy.  London,  Ontario,  Canada:  The  University  of  Western  Ontario.     Venzant  Chambers,  T.  T.,  &  McCready,  L.  T.  (2011).  "Making  space"  for  ourselves:  african   american  student  responses  to  their  marginalization.  Urvan  Education  ,  46  (6),   1352-­‐1378.     Wilchins,  R.  A.  (1997).  Read  my  lips:  sexual  subversion  and  the  end  of  gender.  Ithica,  New   York:  Firebrand  Books.     Wilson,  D.  W.,  &  Washington,  G.  (2008).  Retooling  phenomenology:relevant  methods  for   conducting  research  with  african  american  women.  The  Journal  of  Theory   Construction  &  Testing  ,  11  (2),  63-­‐66.     Yoshino,  K.  (2001,  December  11).  Covering.  The  Yale  Law  Journal  ,  769-­‐939.          

 

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity   Education  

138    

 

Ph.D.   Educational  Leadership  and  Learning  Technologies  (Specialty  Mathematics  Education).   Degree  conferred  June  2013.  Drexel  University.   M.A.  

Mathematics  Education.  Degree  conferred  September  2008.  University  of  Minnesota.  

B.S.   Mathematics,  Education  Emphasis.  Degree  conferred  August  1994.  Saint  Cloud  State                                                                                 University.  Magna  Cum  Lauda.   B.A.  

Mathematics.  Degree  conferred  December  1987.  University  of  Minnesota.  

University  Teaching  Experience   • Instructor,  Advanced  Math  Methods,  TFA  program  University  of   Pennsylvania.  

 

Spring  2012    

• Instructor,  Independent  Study  –  Advanced  Math  Methods,  TFA   program  University  of  Pennsylvania.  

Spring  2012  

• Instructor,  Elementary  Math  Methods  and  Content,  Online  Course,   Drexel  University.  

Winter  2012  

   

• Instructor,  Secondary  Math  Methods  and  Content,  Online  Course,   Drexel  University.  

Winter  2012   Fall  2011  

• Instructor,  Advanced  Math  Methods,  TFA  program,  University  of   Pennsylvania.  

  Fall  2011  

• Instructor,  Independent  Study  –  Advanced  Math  Methods,  TFA   program  University  of  Pennsylvania.  

 

• Instructor,  Professional  Studies  in  Instruction,  Online  course,  Drexel   University.  

Fall  2011  

• Instructor,  Teaching  Secondary  Mathematics,  Online  course,  Drexel   University.  

Fall  2011  

   

• Instructor,  Teaching  Secondary  Mathematics,  Online  course,  Drexel   University.  

Spring  2011                                                                  

• Teaching  Assistant.  Algebra  MTED  program,  Online  course  Drexel   University.  

Winter  2011                                          

   

• Teaching  Assistant.  Geometry  MTED  program,  Online  course  Drexel   University.  

Fall  2010  

• Instructor.  Elementary  Math  Methods.  Drexel  University.  

 

Spring  2010  

 

 

 

Publications   • Publication-­‐  “Unpacking  Online  Asynchronous  Collaboration  in   Mathematics  Teacher  Education”  in  ZDM:  The  International  Journal   on  Mathematics  Education.  Third  Author.  

 

                                                                         2012                                                                                          

Exploring  the  intersection  of  Queer  Identity  and  Mathematical  Identity  

139